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We'll cover a range of bootstrapping
procedures today.

 Background on the bootstrap
* Non-parametric: The naive bootstrap

 Handling dependency: The Moving Block
nootstrap

 Honoring a model: Parametric bootstrap

» Balanced approach: The Maximum Entropy
bootstrap



When and why do we bootstrap time
series data?

 You have some time series data
e But not much data — whatever “much” means

* Want to estimate a statistic — especially a
tricky statistic

e ... andits confidence interval
e No closed-form solution



Bootstrapping generates bootstrap
replicates and replicate statistics.
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Q: How do we get statistic's conf.
Interval from replicate statistics?

A: The percentiles of the empirical distribution
(histogram) give the confidence interval for the
statistic. Cool!
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Bootstrapping time series data has
special challenges.

* Interesting time series are not I.1.d.
We difference the data.

 How do we generate plausible bootstrap
replicates?

Several ways. That's what this talk is really about.
« How do we deal with dependency structure?

By choosing the right replication method. Stay
tuned.



The bootstrap procedure requires
.1.d. data.

I.I.d. necessary for resampling with replacement.
Differencing time series can create I1.1.d. data.

Random walk model, where €~ N(O, o2):

Yi=Yu T &

Becomes:

& =YY



If differences are 1.1.d., we can use the naive
bootstrap.

Procedure:
1) Calculate successive differences.
2) Repeatedly,

1) Resample the differences with replacement.

2) Sum those differences to construct one replicate time
series.

3) Using that time series, calculate one replicate statistic.

3) From all the replicate statistics, form the estimate and
confidence interval:

Mean of replicate statistics — estimate

Percentiles of replicate statistics — confidence interval



Toy Example

Given time series:

[1] 10.00 9.67 9.50 8.66 8.33 7.26 7.48 8.03 8.60 8.44
Statistic of interest for given data:

[1] 2.74

Compute differences:

[1] -0.33 -0.17 -0.84 -0.33 -1.07 0.22 0.55 0.57 -0.16
Resample the differences with replacement:

[1] 0.55-0.16 -0.84 -0.33 0.22 -0.84 0.22 0.22 0.57
Construct one bootstrap replicate (by summing):

[1] 10.00 10.55 10.39 9.55 9.22 9.44 8.60 8.82 9.04 9.61
Compute one replicate statistic:

[1] 1.95




Nailve bootstrap example:
Stock price, differences, net change
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Check: Is It reasonable to assume
differences are 1.1.d.?




Create replicates by summing
resampled differences
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Nailve bootstrap example:
Statistic of interest Is net change

Bootstrap Replicate Outcomes




Simple implementation in R

diffs = diff(price)
21

HOR

reps = replicate(999,
sample(diffs, HOR, replace=TRUE),
simplify=TRUE)

reps = apply(reps, 2, cumsum)

outcomes = reps[HOR, ]

print(

quantile(outcomes, prob=c(0.025, 0.975)) )



Mean and guantiles of replicate
statistics give estimate and conf. int.

> summary (outcomes)

Min. 1lst Qu. Median Mean 3rd OQu. Max.
-14.430 -1.225 1.120 1.057 3.445 11.540
> quantile(outcomes, prob=c(0.025, 0.975))

2.5% 97.5%

-6.4120 7.6425



Next problem:
What if the differences are not 1.1.d.?

If not, purely random resampling will not capture
the structure of the differences.

Bootstrap replicates will not resemble our data.

Uh oh.



Example: AR(1) time series,
maximum drawdown statistic




The ACF of this time series reveals
a (simple) dependency.




Moving Block Bootstrap preserves
(local) dependency structure.

e Break time series into little blocks.

 Resample the blocks, not individual points —
kind of “random shuffling”, with replacement.

* Within blocks, structure is preserved.

* Works If structure between blocks is (quasi)
.1.d.




The Moving Block procedure
resamples blocks, not points.
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In R, tsboot and boot.ci together

implement a moving block bootstrap.

theStatistic = function(x) { . . . }

BLOCK _SIZE = 5 # guess for block size...

mbb = tsboot(ts(xa), theStatistic, R=999,
1=BLOCK SIZE, sim="fixed")

replStats = as.vector(mbb$t)

print (summary(replStats)) # for estimate

print (

boot.ci(mbb, type=c("norm","basic","perc"))

)



Output from boot.ci

*** Summary of Replicate Statistics: AR(1l) Data, Block Bootstrap
Min. 1lst Qu. Median Mean 3rd Qu. Max.
6.868 10.350 11.910 11.420 13.390 13.390

*** Confidence Intervals: AR(1l) Data, Block Bootstrap
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 999 bootstrap replicates

CALL
boot.ci(boot.out = bout, type = c("norm", "basic", "perc"))

Intervals :
Level Normal Basic Percentile
95% ( 3.174, 9.245 ) ( 4.240, 9.084 ) ( 8.541, 13.385 )

Calculations and Intervals on Original Scale



Sidebar: Normal approx. does not
work for maximum drawdown.

Replicate Statistics: AR(1) Series, Block Bootstra ¢]
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What If you have a useful model of
your data?

Example: ARMA, state-space model, or
seasonality.

Model can remove known structure.
Residuals embody the remaining uncertainty.

If residuals are I1.1.d. time series, we can
bootstrap them:

Run the model repeately, each time
substituting resampled residuals for originals.



For example, let's fit the AR(1) data
to a model (with trend term).

*** Fitted AR(1l) model:

Call:
arima(x = as.ts(xa), order = c(1l, 0, 0), xreg = time,
include.mean = FALSE)

Coefficients:
arl time
-0.0329 0.0449
s.e. 0.0995 0.0027

sigma”2 estimated as 2.622: log likelihood = -190.09, aic
= 386.18



Unlike the original AR(1) data, the
residuals show no autocorrelation.




Bootstrap residuals by resampling &
Inserting them into AR(1) process.

If residuals are

€ - &

Resample with replacement, giving

€, - &

And substitute into the AR(1) process:
)/t:6-I-(p)/t-l-l-gtI



Bootstrap replicates will be plausible
variations that conform to the model.

, Bootstrap of Residuals

ies

AR(1) Ser

Typical Replicates

ot

sa1eol|day

100

80

60

40

20

Time



Results of bootstrapping AR(1)
residuals

Obs'ed Sample and Replicates: AR(1) Series, Bootstrap of Residuals




If the model's good, It can tighten
the final confidence interval.

*** Summary of Replicate Statistics: AR(1l) Series, Bootstrap of Residuals
Min. 1lst Qu. Median Mean 3rd OQu. Max.
3.933 7.784 8.767 8.940 10.410 12.330

*** Confidence Intervals: AR(1l) Series , Bootstrap of Residuals
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 999 bootstrap replicates

CALL
boot.ci(boot.out = bout, type = c("norm", "basic", "perc"))

Intervals :
Level Normal Basic Percentile

95% ( 5.302, 12.067 ) ( 5.816, 12.507 ) ( 5.118, 11.809 )

Calculations and Intervals on Original Scale



Seasonality model suggests
resampling across seasons.
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Seasonal replicates example:
median and 95% conf. bands

Seasonal Pattern
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Advanced techniques can handle
other dependency structures.

Procedure Structure

Moving block Stationary; discrete or
categorical data

Local bootstrap — Similar to Short-range dependence, mild
Monte Carlo distributional assumtpion.

Markov bootstrap Stalonary, short-range
depdence; discrete or
categorical data

Sieve bootstrap AR(n) models



Is there a middle-ground between
naive bootstrap and full model?

Naive Is, uh, too naive.

Model is often unknown.

Maximum Entropy bootstrap is alternative.
Parametric bootstrap of differences.

Maximum entropy distribution of differences —
very mild assumption

Preserves many properties, including shape,
seasonality, even some non-stationarity



Vastly oversimplifed outline of
maximum entropy bootstrap

1) Sort the original data.

2) Using sorted data, compute its intermediate points and lower
limits for left and right tails.

3) Compute the mean of the maximum entropy density within each
Interval.

4) Generate uniform random values on [0,1], and compute sample
guantiles at those points.

5) Apply to the sample quantiles the correct order to honor the
dependence relationships of the observed data.

6) Repeat steps 4 and 5 many times (e.g. 999).



Example: This bond market data seems to have
structure. Naive bootstrap works poorly.

Market Data
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The maximum entropy bootstrap
preserves the gross structure.

Typical Replicates: Market Data, Max. Ent. Boot.
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Observed and Replicates

Maximum Entropy Replicates

Obs'ed Sample and Replicates: Market Data, Max. Ent. Boot.
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In R, meboot package implements
the max. entropy bootstrap.

library (meboot)

mebOut = meboot(ts(diff(prices)), reps=999)
mebens = mebOut$ensemble

mebens = rbind(prices[1l], mebens)

repls = apply(mebens, 2, cumsum)

# 'repls' contains the bootstrap replicates



Bootstrapping Time Series Data:
Some Limitations

* Problems with sample: non-representative, too small

* Problems from dependency structure: wrong
dependency assumption; regime changes; long-term
dependency; overlooked completely

« Parametric bootstrap: wrong model; non-stationary
(unstable) process, hence unstable parameters

* Problems with certain statistics: “Edge” statistics may
require many, many replicates

* Finally, Monte Carlo may be better alternative



Some References

* An Introduction to the Bootstrap by Efron and Tibshirani

» Bootstrap Methods and Their Applications by Davison and
Hinkley

* “The Moving Blocks Bootstrap Versus Parametric Time
Series Models”, Vogel and Shallcross, Water Resources
Research (June 1996)

» “Bootstraps for Time Series”, Buhlmann, Statistical Science
(2002, No. 1)

e “Maximum Entropy Bootstrap for Time Series”, Vinod and
Lopez-de-Lacalle, J. of Stat. Soft. (Jan 2009)



Thank you!

Talk materials available at

http://bit.ly/csp20l4-teetor



