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Abstract 
 

The bootstrap is a method for estimating the distribution of an estimator or test statistic 
by resampling one’s data or a model estimated from the data.  The methods that are available for 
implementing the bootstrap and the accuracy of bootstrap estimates depend on whether the data 
are a random sample from a distribution or a time series.  This paper is concerned with the 
application of the bootstrap to time-series data when one does not have a finite-dimensional 
parametric model that reduces the data generation process to independent random sampling.  We 
review the methods that have been proposed for implementing the bootstrap in this situation and 
discuss the accuracy of these methods relative to that of first-order asymptotic approximations.  
We argue that methods for implementing the bootstrap with time-series data are not as well 
understood as methods for data that are sampled randomly from a distribution.  Moreover, the 
performance of the bootstrap as measured by the rate of convergence of estimation errors tends to 
be poorer with time series than with random samples.  This is an important problem for applied 
research because first-order asymptotic approximations are often inaccurate and misleading with 
time-series data and samples of the sizes encountered in applications.  We conclude that there is a 
need for further research in the application of the bootstrap to time series, and we describe some 
of the important unsolved problems. 
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BOOTSTRAP METHODS FOR TIME SERIES 
 
 
1.  Introduction 

The bootstrap is a method for estimating the distribution of an estimator or test statistic 

by resampling one’s data or a model estimated from the data.  Under conditions that hold in a 

wide variety of applications, the bootstrap provides approximations to distributions of statistics, 

coverage probabilities of confidence intervals, and rejection probabilities of tests that are at least 

as accurate as the approximations of first-order asymptotic distribution theory.  Often, the 

bootstrap provides approximations that are more accurate than those of first-order asymptotic 

theory.  

 The methods that are available for implementing the bootstrap and the improvements in 

accuracy that it achieves relative to first-order asymptotic approximations depend on whether the 

data are a random sample from a distribution or a time series.  If the data are a random sample, 

then the bootstrap can be implemented by sampling the data randomly with replacement or by 

sampling a parametric model of the distribution of the data.  The distribution of a statistic is 

estimated by its empirical distribution under sampling from the data or parametric model.  Beran 

and Ducharme (1991), Hall (1992), Efron and Tibshirani (1993), and Davison and Hinkley (1997) 

provide detailed discussions of bootstrap methods and their properties for data that are sampled 

randomly from a distribution.   

The situation is more complicated when the data are a time series because bootstrap 

sampling must be carried out in a way that suitably captures the dependence structure of the data 

generation process (DGP).  This is not difficult if one has a finite-dimensional parametric model 

(e.g., a finite-order ARMA model) that reduces the DGP to independent random sampling.  In 

this case and under suitable regularity conditions, the bootstrap has properties that are essentially 

the same as they are when the data are a random sample from a distribution.  See, for example, 

Andrews (1999) and Bose (1988, 1990). 

 This paper is concerned with the situation in which one does not have a finite-

dimensional parametric model that reduces the DGP to independent random sampling.  We 

review the methods that have been proposed for implementing the bootstrap in this situation and 

discuss the ability of these methods to achieve asymptotic refinements.  We argue that methods 

for implementing the bootstrap with time-series data are not as well understood as methods for 

data that are sampled randomly from a distribution.  Moreover, the performance of the bootstrap 

as measured by the order of the asymptotic refinements that are available from known methods 

tends to be poorer with time series than with random samples.  This is an important problem for 
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applied research because first-order asymptotic approximations are often inaccurate and 

misleading with time-series data and samples of the sizes encountered in applications.  We 

conclude that there is a need for further research in the application of the bootstrap to time series, 

and we describe some of the important unsolved problems.   

 Section 2 of this paper describes the estimation and inference problems that will be 

discussed in the remainder of the paper.  Section 2 also provides background information on the 

performance of the bootstrap when the data are a random sample from a distribution and on the 

theory underlying the bootstrap’s ability to provide asymptotic refinements.  Section 3 reviews 

the block bootstrap, which is the oldest and best known nonparametric method for implementing 

the bootstrap with time-series data.  The block bootstrap imposes relatively few a priori 

restrictions on the DGP, but this flexibility comes at the price of estimation errors that converge 

to zero relatively slowly.  Section 4 discusses methods that make stronger assumptions about the 

DGP but offer the possibility of faster converging estimation errors.  Section 5 presents 

conclusions and suggestions for further research.  The regularity conditions required by bootstrap 

methods for time-series tend to be highly technical, and they vary among investigators and 

methods for implementing the bootstrap.  To enable us to concentrate on important ideas rather 

than technicalities, we do not give detailed regularity conditions in this paper.  They are available 

in the references that are cited. 

 We assume throughout this paper that the DGP is stationary and weakly dependent.  

Bootstrap methods for DPG’s that do not satisfy this condition, notably long-memory and unit-

root processes, are important topics for research but are at a much more preliminary stage of 

development than are methods for stationary, weakly dependent processes. 

2.  Problem Definition and Background Information 
 This section has three parts.  Section 2.1 describes the estimation and inference problems 

that will be treated in the remainder of the paper.  Section 2.2 reviews the performance of the 

bootstrap when the data are a random sample from a distribution.  This performance provides a 

useful benchmark for judging the bootstrap’s performance when the data are a time series.  

Section 2.3 reviews the theory underlying the bootstrap’s ability to provide asymptotic 

refinements. 
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 2.1  Statement of the Problem  

Let { : 1,..., }iX i = n  be observations from the sequence { , where 

 for each integer i and some integer d satisfying 1

: }iX i−∞ < < ∞

d
iX ∈ d≤ < ∞ .  Unless otherwise stated, we 

assume that { }iX  is a realization of a discrete-time stochastic process (the DGP) that is strictly 

stationary and geometrically strongly mixing (GSM).  We also assume that 1( )Xµ ≡ E  exists.  

Define .  Let  be a function.  In this paper, we are concerned with 

making inferences about 

1
1

n
n ii

m n X−
=∑= : dθ →

( )θ θ µ=  based on the estimator ( )n nmθ θ≡ .  

As is discussed by Hall and Horowitz (1996) and Andrews (2002), a wide variety of 

estimators that are important in applications can be approximated with (higher-order) 

asymptotically negligible errors by functions of the form ( nm )θ .  Thus, the focus on estimators 

of this form is not highly restrictive.  In particular, generalized-method-of-moments (GMM) 

estimators can be approximated this way under mild regularity conditions (Hall and Horowitz 

1996, Andrews 2001).  GMM is a method for estimating a possibly vector-valued parameter ψ  

that is identified by the moment condition ( ,g X ) 0ψ =E , where g  is a function whose 

dimension equals or exceeds that of ψ .  The class of GMM estimators includes linear and 

nonlinear least squares estimators and maximum likelihood estimators, among many others.  

Hansen (1982) provides details of the GMM estimation method and gives conditions under which 

GMM estimators are -consistent and asymptotically normal. 1/ 2n

Assume now that ( )nmθE  and  exist.  Define 2 [ ( )]nVar mθσ θ≡ 2σ∞  to be the variance of 

the asymptotic distribution of 1/ 2n ( n )θ θ− , and let 2
ns  be a weakly consistent estimator of 2σ∞ .  

In the remainder of this paper, we discuss the use of the bootstrap to estimate the following 

quantities, all of which are important in applied research: 

 1. The bias and variance of nθ , that is nθ θ−E  and 2
θσ . 

 2. The one-sided distribution functions 1/ 2[ ( )nn ]θ θ τ− ≤P , 

1/ 2[ ( ) /nn ]θ θ σ τ∞− ≤P , and 1/ 2[ ( ) /n nn s ]θ θ τ− ≤P  for any real τ . 

 3. The symmetrical distribution functions 1/ 2[ | ( ) |nn ]θ θ τ− ≤P , 

1/ 2[ | ( ) | /nn ]θ θ σ τ∞−P ≤ ], and 1/ 2[ | ( ) | /n nn sθ θ τ− ≤P . 
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 4. The coverage probabilities of one-sided and symmetrical confidence intervals for 

θ .  These are 1̂n nz sαθ θ −−∞ < ≤ − , ˆn nz sαθ θ− ≤ < ∞ , and / 2 / 2ˆ ˆn n nz s z sα α nθ θ θ− ≤ ≤ + , where 

ẑα  is a bootstrap estimator of the 1 α−  quantile of the distribution of . 1/ 2 ( ) /n nn sθ θ−

 5. The probabilities that one-sided and symmetrical tests reject the correct null 

hypothesis 0H :  0θ θ=

ẑ

.  For one-sided tests, the test statistic is  with bootstrap 

critical values 

1/ 2
0( ) /nn θ θ− ns

α  and 1̂z α−

| (n

 for upper- and lower- tail tests, respectively.  For a symmetrical test, 

the test statistic is , and the bootstrap critical value is .   1/ 2 ) | /nθ θ− ns / 2ẑα

The conclusions regarding coverage probabilities of confidence intervals and rejection 

probabilities of tests are identical, so only the rejection probabilities of tests are treated explicitly 

here.   

 2.2  Performance of the Bootstrap when the Data Are a Random Sample 

 The rates of convergence of the errors made by first-order asymptotic approximations and 

by bootstrap estimators with data that are a random sample provide useful benchmarks for 

judging the bootstrap’s performance with time series.  As will be discussed in Sections 3 and 4, 

the errors made by the bootstrap converge to zero more slowly when the data are a time series 

than when they are a random sample.  In some cases, the rates of convergence for time series data 

are close to those for a random sample, but in others they are only slightly faster than the rates 

with first-order approximations.   

If the data are a random sample, then under regularity conditions that are given by Hall 

(1992), 

 1. The bootstrap estimates 2
θσ  consistently and reduces the bias of nθ  to O n 2( )− .  

That is 2ˆ( ) (n n )B O nθ θ −− − =E , where ˆ
nB  is the bootstrap estimator of ( n )θ θ−E

ˆ
n

.  By contrast, 

.  Horowitz (2001a) gives an algorithm for computing 1( ) ( )O nθ θ −− =nE B . 

If, in addition, , then: 1/ 2 ( ) / (0,d
n nn s Nθ θ− → 1)

]

 2. The errors in the bootstrap estimates of the one-sided distribution functions 
1/ 2[ ( ) /nn θ θ σ τ∞− ≤P  and 1/ 2[ ( ) /n nn s ]θ θ τ− ≤P  are O n 1(p )− .  The errors made by first order 

asymptotic approximations are O n .  By “error” we mean the difference between a 

bootstrap estimator and the population probability that it estimates. 

1/ 2( )−
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 3. The errors in the bootstrap estimates of the symmetrical distribution functions 
1/ 2[ | ( ) | /nn ]θ θ σ τ∞−P ≤ ] and 1/ 2[ | ( ) | /n nn sθ θ τ− ≤P

1( )

 are O n , whereas the errors 

made by first-order approximations are O n

3/ 2(p
− )

− . 

 4. When the bootstrap is used to obtain the critical value of a one-sided hypothesis 

test, the resulting difference between the true and nominal rejection probabilities under the null 

hypothesis (error in the rejection probability or ERP) is 1(O n )− , whereas it is  when the 

critical value is obtained from first-order approximations.  The same result applies to the error in 

the coverage probability (ECP) of a one-sided confidence interval.  In some cases, the bootstrap 

can reduce the ERP (ECP) of a one-sided test (confidence interval) to  (Hall 1992, p. 

178; Davidson and MacKinnon 1999). 

1/ 2(O n−

3/ 2( )

)

)

O n−

 5. When the bootstrap is used to obtain the critical value of a symmetrical 

hypothesis test, the resulting ERP is O n 2( − , whereas it is 1(O n )−  when the critical value is 

obtained from first-order approximations.  The same result applies to the ECP of a symmetrical 

confidence interval. 

 2.3  Why the Bootstrap Provides Asymptotic Refinements 

 This section outlines the theory underlying the bootstrap’s ability to provide asymptotic 

refinements.  To minimize the length of the discussion, we concentrate on the distribution 

function of the asymptotically N(0,1) statistic T n  and the ERP of a symmetrical 

hypothesis test based on this statistic.  Similar arguments apply to one-sided tests and to 

confidence intervals.  Hall (1992) gives regularity conditions for the results of this section when 

the data that are a random sample from a distribution.  The references cited in Sections 3-4 give 

regularity conditions for time series. 

1/ 2 ( ) /n n sθ θ≡ − n

Let P̂  denote the probability measure induced by bootstrap sampling, and let T  denote 

a bootstrap analog of T .  If the data are a random sample from a population, then it suffices to 

let 

n̂

n

P̂  be the empirical distribution of the data.  Bootstrap samples are then drawn by sampling 

the data { :i 1,..., }X i = n  randomly with replacement.  If { ˆ : 1,..., }iX i = n

/ n

 is such a sample, then 

1/ 2 ˆˆ ˆ( )n n nT n sθ θ≡ − , 

where , , and ˆ ˆ( )n nmθ θ= 1
1

ˆˆ n
n i

m n X−
=

= ∑ i
2ˆns  is obtained by replacing the { }iX  with { ˆ }iX  in the 

formula for 2
ns .  For example, if nΣ  denotes the sample covariance matrix of X  and 
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2 ( ) (n n n )ns mθ θ′= ∇ Σ ∇ m ˆ )n, then 2 ˆˆ ˆ( ) (n n ns mθ θ′= ∇ Σ ∇ m , where ˆ
nΣ  is the sample covariance 

matrix of the bootstrap sample.  Bootstrap versions of T  for time-series data are presented in 

Sections 3-4.  The discussion in this section does not depend on or require knowledge of the 

details of the bootstrap versions of T . 

n̂

n̂

)T z≤ ˆ ˆ( )nT z≤P

Φ

n )j ≤ jκ− +

1( 2) (jI j n o nκ−= + + jκ

1 4( ,..., )κ κ κ ′=

n̂

1 ˆ( 2) (jI j n o nκ−= + +

1/

X 1 4ˆ ˆ ˆ( , ..., )κ κ κ ′=

( )nT z≤P

( )T z≤ = ΦP / 2 3/( , ) ( ) (j
n jn g z z O nκ φ− −+

)

2

κ

(| | )nT

z

≤P

(| | ) 2nT z 1 2
22 ( , ) ( ) (n g z z Oκ φ )n− −+ +≤ =P

/ 2 3/ˆ( , ) ( ) (j
n jn g z z O nκ φ− −+

1 2
2 ˆ2 ( , ) ( ) (n g z z Oκ φ

2

)n

ˆ ˆ( )T z≤ = ΦP

ˆ ˆ(| | ) 2nT z − −+ +≤ =P

The arguments showing that the bootstrap yields asymptotic refinements are based on 

Edgeworth expansions of  and ( nP .  Additional notation is needed to describe 

the expansions.  Let  and φ , respectively, denote the standard normal distribution function and 

density.  The j’th cumulant of T  ( 4 has the form  if j is odd and 

 if j is even, where 

1/ 2 1/ 2(n o n

1)−  is a constant and  is the indicator function 

(Hall 1992, p. 46).  Define 

I

.  Conditional on the data { :i 1,..., }X i n=

2 1/ 2ˆ ( )jn o nκ− −+

ˆ j

, the j’th 

cumulant of T  almost surely has the form  if j is odd and 

 if j is even.  The quantities 1)− κ  depend on { }iX .  They are 

nonstochastic relative to bootstrap sampling but are random variables relative to the stochastic 

process that generates { }i .  Define .  

)−

 has the Edgeworth expansion 

(2.1)  
2

1
( )

j
z

=

+∑ )

uniformly over z, where ( ,jg z κ  is a polynomial function of z for each κ , a polynomial function 

of the components of  for each , an even function of z if j = 1, and an odd function of z if j = 

2.  Moreover, z  has the expansion 

(2.2) ( ) 1zΦ −  

uniformly over z.  Conditional on the data, the bootstrap probabilities ˆ ˆ( )nT z≤P  and ˆ ˆ( | | )nT z≤P  

have the expansions 

(2.3)  
2

1
( )

j
z

=

+∑ )

and 

(2.4) ( ) 1zΦ −  
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uniformly over z almost surely.  Let jgκ∇  denote the gradient of jg  with respect to its second 

argument.  Then a Taylor series expansion yields 

(2.5) [ ] ( )21/ 2 1/ 2 1
1

ˆ ˆ ˆ ˆ| ( ) ( ) | ( , )( ) ( ) ( )n nT z T z n g z z O n O nκ κ κ κ φ κ κ− − −≤ − ≤ = ∇ − + − +P P  

and  

(2.6) [ ] ( )21 1
2

ˆ ˆ ˆ ˆ| ( | | ) (| | ) | 2 ( , )( ) ( ) (n nT z T z n g z z O n O nκ κ κ κ φ κ κ 2 )− − −≤ − ≤ = ∇ − + − +P P  

almost surely uniformly over z.  Thus, the leading terms of the errors made by bootstrap 

estimators of one-sided and symmetrical distribution functions are [ ]1/ 2
1 ˆ( , )( ) ( )n g zκ κ κ κ φ− ∇ − z

] ( )z

 

and , respectively.  If the data are a random sample from a 

distribution, then 

[1
2 ˆ2 ( , )( )n g zκ κ κ κ φ− ∇ −

1/ˆ (pO nκ κ −− =

3/ 2( )−

2 ) , so the errors of the bootstrap estimators are  and 

 for one-sided and symmetrical distribution functions, respectively.  The root-mean-

square estimation errors (RMSE’s) also converge at these rates.  As will be discussed in Sections 

3 and 4, the rate of convergence of 

1( )pO n−

pO n

κ̂ κ−  is slower than  when the data are a time series.  

Thus, the errors of bootstrap estimators of distribution functions are larger when the data are a 

time series than when they are a random sample.  

1/ 2n−

 Now consider the ERP of a symmetrical hypothesis test.  Let  and , 

respectively, denote the 1

/ 2zα / 2ẑα

/ 2α−

/ 2 ) 1zα

 quantiles of the distributions of T  and T .  Then n n̂

/ 2
ˆ ˆ ˆ(| | ) (| |n nT z Tα α≤ = −P P ≤ = .  The bootstrap-based symmetrical test at the nominal α  

level accepts  if | | .  Thus, the ERP of the test is 0H nT ≤ / 2ẑα / 2ˆ(| | (nT zα ) 1 )α≤ − −P . 

To derive the ERP, use (2.1) and (2.3) to obtain  

(2.7)  1 2
22 ( ) 1 2 ( , ) ( ) 1 ( )z n g z z Oα α ακ φ α− −Φ − + = − + n

n

and 

(2.8)  1 2
2 ˆˆ ˆ2 ( ) 1 2 ( , ) ( ) 1 ( )z n g z z Oα α ακ φ α− −Φ − + = − +

almost surely.  Let vα  denote the 1 / 2α−  quantile of the  distribution.  Then Cornish-

Fisher inversions of (2.7) and (2.8) give 

(0,1)N

  1 2
2 ( , ) ( )nz v n g v O nα α α κ− −= − +

and 

  1 2
2 ˆˆ ( , ) ( )nz v n g v O nα α α κ− −= − +

almost surely (Hall 1992).  Therefore, 
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(2.9) . 1 2
2 2ˆˆ(| | ) {| | [ ( , ) ( , )] ( )}n n n nT z T z n g v g v O nα α α ακ κ− −≤ = ≤ + − +P P

Now suppose that ˆ ( aO nκ κ −− = )  almost surely for some .  Since the components of 0a > κ  

can be estimated with errors that are no smaller than , it follows from (2.9) that 1/ 2 )(pO n−

1
/ 2ˆ(| | ) 1 ( )a

nT z O nα α − −≤ = − +P . 

Thus, in general, the rate of convergence of the ERP (and of the ECP for a symmetrical 

confidence interval) is determined by the rate of convergence of κ̂ κ− .   

If the data are a random sample from a distribution, then it is possible to carry out an 

Edgeworth expansion of the right-hand side of (2.9).  This yields 

(2.10) 2
/ 2ˆ(| | ) 1 ( )nT z O nα α −≤ = − +P  

See Hall (1992, pp. 108-114).  Thus, the ERP of a symmetrical test (and the ECP of a 

symmetrical confidence interval) based on the bootstrap critical value  is  when the 

data are a random sample from a population.  As will be discussed in Sections 3 and 4, this rate of 

the ERP is not available with current bootstrap methods for time series.  Rather, the ERP for 

time-series data is O n  for some  satisfying 

/ 2ẑα
2(O n− )

)1( a− − a 0 1/ 2a< < . 

3.  The Block Bootstrap 
 The block bootstrap is the best-known method for implementing the bootstrap with time-

series data.  It consists of dividing the data into blocks of observations and sampling the blocks 

randomly with replacement.  The blocks may be non-overlapping (Hall 1985, Carlstein 1986) or 

overlapping (Hall 1985, Künsch 1989, Politis and Romano 1993).  To describe these blocking 

methods more precisely, let the data consist of observations { : 1,..., }iX i n= .  With non-overlapping 

blocks of length , block 1 is observations { :j 1,..., }X j = , block 2 is observations 

, and so forth.  With overlapping blocks of length , block 1 is observations 

, block 2 is observations {

{ : 1,..., }jX j+ =

{ : 1,..., }jX j = 1 :jX j+ 1,..., }= , and so forth.  The bootstrap sample is 

obtained by sampling blocks randomly with replacement and laying them end-to-end in the order 

sampled.  It is also possible to use overlapping blocks with lengths that are sampled randomly from 

the geometric distribution (Politis and Romano 1993).  The block bootstrap with random block 

lengths is also called the stationary bootstrap because the resulting bootstrap data series is 

stationary, whereas it is not with overlapping or non-overlapping blocks of non-stochastic lengths. 
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 Regardless of the blocking method that is used, the block length (or average block length in 

the stationary bootstrap) must increase with increasing sample size n to make bootstrap estimators 

of moments and distribution functions consistent (Carlstein 1986, Künsch 1989, Hall et al. 1995).  

Similarly, the block length must increase with increasing sample size to enable the block bootstrap 

to achieve asymptotically correct coverage probabilities for confidence intervals and rejection 

probabilities for hypothesis tests.  When the objective is to estimate a moment or distribution 

function, the asymptotically optimal block length may be defined as the one that minimizes the 

asymptotic mean-square error of the block bootstrap estimator.  When the objective is to form a 

confidence interval or test a hypothesis, the asymptotically optimal block length may be defined as 

the one that minimizes the ECP of the confidence interval or ERP or the test.  The asymptotically 

optimal block length and the corresponding rates of convergence of block bootstrap estimation 

errors, ECP’s and ERP’s depend on what is being estimated (e.g., bias, a one-sided distribution 

function, a symmetrical distribution function, etc.).  The optimal block lengths and the rates of 

convergence of block bootstrap estimation errors with non-stochastic block lengths are discussed in 

detail in Section 3.2.  The accuracy of the stationary bootstrap is discussed in Section 3.3.  The 

performance of some modified forms of the block bootstrap are discussed in Sections 3.4-3.5.  

Before presenting results on the performance, it is necessary to deal with certain problems that arise 

in centering and Studentizing statistics based on the block bootstrap.  These issues are discussed in 

Sections 3.1. 

 3.1  Centering and Studentizing with the Block Bootstrap 

 Two problems are treated in this section.  The first is the construction of a block bootstrap 

version of the centered statistic ( ) ( )n nmθ θ µ∆ ≡ −  that does not have excessive bias.  This 

problem is discussed in Section 3.1.1.  The second problem is Studentization of the resulting block 

bootstrap version of .  This is topic of Section 3.2.2.  We consider only non-stochastic block 

lengths in this section.  The stationary bootstrap is discussed in Section 3.3. 

1/ 2
nn ∆

 3.1.1  Centering 

 The problem of centering and its solution can be seen most simply by assuming that iX  is 

a scalar and θ  is the identity function.  Thus, n nm µ∆ = −  and 0n∆ =E

1
ˆ

iX

.  An obvious block 

bootstrap version of  is , where , and {n∆ ˆ ˆn nm m∆ = − n
1m̂ n−=

n
n i=∑ ˆ }iX  is the block 

bootstrap sample using either non-overlapping or overlapping blocks.  Let Ê  denote the 
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expectation operator with respect to the probability measure induced by block bootstrap sampling.  

If the blocks are non-overlapping, then , so ˆ ˆ nm m=E n
ˆ ˆ 0n∆ =E .  With overlapping blocks, 

however, it can be shown that 

1 2) nm τ τ− −

( ) jj X= −

ˆ nm

2
n
j n= − −∑

nm

1/ 2∆ =

1/ 2n

}iX

1/ 2n n ( )n nm µ∆ = −

2
ns

2 1s Var n

1/ 2 ˆ
nn

(O n−=

∆ B

B n= ˆ

1ˆ ˆ [ ( 1)] [ ( 1 ]n nm m n −= + − − −E , 

where  is the block length , , and it is 

assumed for simplicity that  is an integer multiple of  (Hall et al. 1995).  Thus,  with 

overlapping blocks.  The resulting bias decreases the rate of convergence of the estimation errors of 

the block bootstrap with overlapping blocks.  This problem can be solved by centering the 

overlapping block bootstrap estimator at 

1
1 1j
τ −

=∑

ˆ

2 [ ( 1)] jj n Xτ = − − +

ˆm̂En n m≠ n

E  instead of at .  The resulting bootstrap version of 

 is n∆ ˆ ˆn nm∆ = − ˆ ˆ nmE .  More generally, the block bootstrap version of ( )nm ( )θ θ µ−  is 

.  This centering can also be used with non-overlapping blocks because 

 with non-overlapping blocks. 

ˆ ˆ( )nmE

nm

ˆ nmθ θ−( )

nm =ˆ ˆE

 3.1.2  Studentization 

 This section addresses the problem of Studentizing .  The 

source of the problem is that blocking distorts the dependence structure of the DGP.  As a result, the 

most obvious methods for Studentizing the bootstrap version 

1/ 2ˆ ˆˆ[ ( ) ( )]n nn n m mθ θ− E

n

ˆ n

∆  create excessively large 

estimation errors.  Various forms of this problem have been discussed by Lahiri (1992), Davison 

and Hall (1993), and Hall and Horowitz (1996).  The discussion in this section is based on Hall and 

Horowitz (1996).   

To illustrate the essential issues with a minimum of complexity, assume that the blocks are 

non-overlapping, θ  is the identity function, and {  is a sequence of uncorrelated (though not 

necessarily independent) scalar random variables.  Let V  denote the variance operator relative to 

the process that generates { }iX .  Then 1/ 2 ,  and 1/ 2 1/ 2ˆ ˆ( )n nn n m∆ = − nm

)1/ 2 2( )nV n 1(X µ∆ = −E .  The natural choice for  is the sample variance, 

, in which case .   2 1
1

n
n ii

s n m−
=

= ∑ 2)(X n− / 2( )n n
1/ 2 )p− ∆

Now consider Studentization of .  Let  and , respectively, denote the block 

length and number of blocks, and assume that . Let V  denote the variance operator relative 
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to the block bootstrap DGP.  An obvious bootstrap analog of 2
ns  is , 

which leads to the Studentized statistic T n .  However, V n

2 1
1

ˆˆ ˆ( )n
n ii

s n X m−
=

= −∑
2 2ˆ ˆ( )n ns

2
n

n
1/ 2 ˆ ˆ/n n s≡ ∆ 1/ ∆ = , where 

( )(i nm X+ +

2 2ˆ [( /n ns s O− =

2 ˆ
n∆

1/ 2( / )n nn s z∆ ≤P

1/ 2
1( , ) (n g z κ φ )

1/ 2
1ˆ ˆ( , ) ( )n g z κ φ 1/ 2( / 1/ )O n n+ +1)n −

1g κ κ̂

ˆ( / )n nn s z≤ − 1/P 1/ 2[( / ) ]O n)z =

)

n ns

1/ 2( )o n−

ˆ( )(b i n b j+ −

1/ 2ˆ ˆ(| | /n

m

∆P

n

1( )−

n̂ n nTτ=

n̂

2 1

0 1 1

B

n b b
b i j

s n X−

= = =

= −∑ ∑ ∑  )j nm−

(Hall and Horowitz 1996).  Moroever,  almost surely.  The consequences of 

this relatively large error in the estimator of the variance of 

1/ 2) ]n

1/n  can be seen by carrying out 

Edgeworth expansions of the one-sided distribution functions  and 

.  These have the forms 1/ 2ˆ ˆ ˆ( /n nn s∆ ≤P )z

1/ 2 1( / ) ( ) ) (n nn s z z z O n− −∆ ≤ = Φ + +P  

and 
1/ 2ˆ ˆ( / ) ( ) ( )(n nn s z z z z zφ τ−∆ ≤ = Φ + +P  

almost surely, where /n n ns sτ =  and , , and  are as defined in Section 2.3 (Hall and 

Horowitz 1996).  Therefore, 1/ 2ˆ ∆̂P 2( /n nn s∆ ≤

1/ 2( −

 By contrast, the 

error made by first-order asymptotic approximations is O n .  Thus, the block bootstrap does 

not provide asymptotic refinements and, in fact, is less accurate than first-order approximations 

when n  is Studentized with 1/ 2 ˆ
n∆ ˆns . 

This problem can be mitigated by Studentizing 1/ 2 ˆn ∆  with  (Lahiri 1996a) or the 

estimator  (Götze and Künsch 1996).  The error 

in the block bootstrap estimator of a one-sided distribution function is then  almost surely 

(Lahiri 1996a, Götze and Künsch 1996).  However, the distributions of the symmetrical 

probabilities  and 

11
0 1 1

B
b i j

n X m−−
+= = =∑ ∑ ∑

1/ 2(| | / )n nn s z∆ ≤P n n

ˆ )nX −

)s z≤  differ by O n , so the block 

bootstrap does not provide asymptotic refinements for symmetrical distributions, confidence 

intervals and tests.   

Refinements for both one-sided and symmetrical distribution functions, confidence 

intervals, and tests can be obtained by replacing T  with the “corrected” statistic T  (Hall 

and Horowitz 1996, Andrews 2002).  In the remainder of this paper, T  will be called a “corrected” 
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bootstrap test statistic and nτ  will be called a correction factor.  The estimation errors resulting 

from the use of corrected statistics are discussed in Section 3.3. 

M

( )−

iX m= −

(θ

( )−

1j
n X

=

n

(

µ

The use of a correction factor can be generalized to the case in which θ  is not the identity 

function and iX  is a vector.  Suppose that cov( , ) 0i jX X =  whenever  for some | |i j M− >

M < ∞ .  (This assumption is weaker than M-dependence, which requires iX  and jX  to be 

independent when | .)  Then |i j− > 2 ( ) (n n n )ns mθ θ′Σ ∇ m

)n

)+

= ∇ , where  

(3.1) , 1

1 1
( ) ( , ,

n M

n i n i n i i j
i j

n X m X m H X X m−
+

= =

 
′ Σ = − +

  
∑ ∑

and ( , , ) ( )( ) ( ) (i i j n n i j n i n i j nH X X m X m X m X m+ + ′ ′− + − − .  The bootstrap version of 

2
ns  is 2 ˆˆ ˆ ˆ( ) )n n n ns m mθ ′= ∇ Σ ∇ , where 

1

1 1

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( ) ( , ,
n M

n i n i n i i j
i j

n X m X m H X X m−
+

= =

 
′ Σ = − +

  
∑ ∑ )n

)j nm

. 

Define 

1

0 1
( )(

B

n b i n b
b i

m X−
+ +

= =

′Σ = − −∑ ∑ ∑ , 

2 ( ) (n n n )s m mθ θ′= ∇ Σ ∇ , and /n ns sτ =

) /n nn sθ θ−

.  Then with non-overlapping blocks, the corrected block 

bootstrap version of  is  (Hall and Horowitz 1996).  

Andrews (2002) gives the overlapping-blocks version of the statistic. 

1/ 2 1/ 2 ˆ ˆ[ ( ) ( )]/n n nn m mτ θ θ− ˆns

 The foregoing discussion assumes that cov( , ) 0i jX X =  when |  for some |i j M− >

M < ∞ .  When this assumption is not made, nΣ  must be replaced by a kernel-type estimator of the 

covariance matrix of nm − .  See, for example,  (e.g., Newey and West 1987, 1994; Andrews 

1991, Andrews and Monahan 1992, Götze and Künsch 1996).  In contrast to the covariance-matrix 

estimator (3.1), kernel covariance matrix estimators are not functions of sample moments.  This 

complicates the analysis of rates of convergence of estimation errors.  As was discussed in Section 

2.3, this analysis is based on Edgeworth expansions of the distributions of the relevant statistics.  

The most general results on the validity of such expansions assumes that the statistic of interest is a 

function of sample moments (Götze and Hipp 1983, 1994; Lahiri 1996b).  Consequently, as will be 

discussed in Section 3.2, the properties of the block bootstrap are less well understood when 

Studentization is with a kernel covariance matrix estimator than when Studentization is with a 

function of sample moments.   
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 3.2  The Accuracy of Block Bootstrap Estimates 

 This section summarizes results on the magnitudes of the estimation errors made by the 

block bootstrap.  The earliest result appears to be due to Carlstein (1986), who gave conditions 

under which the block bootstrap with non-overlapping blocks provides a consistent estimator of 

the variance of { 1}X  based on observations { : 1,..., }iX i n=  from a strictly stationary time series.  

For the special case of an AR(1) DGP, Carlstein also calculated the block length that minimizes 

the asymptotic mean-square error (AMSE) of the variance estimator (the asymptotically optimal 

block length).  This length increases at the rate .  The corresponding AMSE of the 

variance estimator is . 

1/ 3n∝

2 / 3( )O n−

 Künsch (1989) investigated the use of the block bootstrap to estimate a distribution 

function.  He gave conditions under which the overlapping-blocks bootstrap consistently 

estimates the CDF of a sample average.  Lahiri (1991, 1992) was the first to investigate the ability 

of the overlapping-blocks bootstrap to provide asymptotic refinements for estimation of the CDF 

of a normalized function of a sample mean.  He also investigated refinements for the CDF of a 

Studentized function of a sample mean for the special case in which the DGP is M-dependent.  

Lahiri (1991, 1992) gave conditions under which the error in the bootstrap estimator of the one-

sided distribution function of a normalized or Studentized function of a sample mean is  

almost surely.  In contrast, the errors made by first-order asymptotic approximations are 

, so the overlapping-blocks bootstrap provides an asymptotic refinement.  

1/ 2( )o n−

1/ 2(O n− )

 Lahiri’s results were refined and extended by Hall, et al. (1995) and Zvingelis (2001), 

who give exact rates of convergence of block bootstrap estimators of certain moments, one-sided 

and symmetrical distribution functions, and the ERP’s of tests.  We first summarize the results of 

Hall, et al. (1995).  The following notation will be used.  Define ( ) ( )n nmθ θ µ∆ = − , nβ = ∆E , 

and , where the moments are assumed to exist.  Define the block bootstrap 

analogs , 

2 1/ 2( nV nσ∞ = ∆

( )n n∆ =

)

)ˆ ˆˆ ˆ(m mθ θ− E n
ˆ ˆ ˆβ = ∆nE , and 2 1/ 2ˆ ˆˆ ( nV nσ∞ )= ∆

2 /n

.  The block bootstrap may use 

either overlapping or non-overlapping blocks.  Define one-sided and symmetrical distribution 

functions of the normalized statistic n1/ σ∞∆  by 1/ 2
1( ) ( /n )F z n σ∞ z= ∆P ≤  and 

1/ 2( ) ( | | /n2 )F z n= ∆P zσ∞ ≤ .  Define bootstrap analogs of 1F  and 2F  by 1̂( )F z =  

 and 1/ 2ˆ ˆ ˆ( /nn zσ∞∆ ≤ ) 2 ( )P 1/ 2ˆ ˆ ( | ˆ ˆ| / )nF z n= ∆P z∞ ≤σ .  Finally, let ˆ( , )ψ ψ  denote either ˆ( , )β β  

or , and let 2 2ˆ( / , / )n nσ σ∞ ∞ φ  denote the standard normal density function.   
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Hall, et al. (1995) show that there are constants C  (j = 1,..., 6) such that j

(3.3) , 2 2 2 1
1 2ˆ( ) ~ (n C C nψ ψ − − −− +E )

2(3.4) 2 1 2 1 2
1 1 3 4

ˆ[ ( ) ( )] ~ ( ) ( )F z F z n C C n zφ− − −− +E , 

and 

(3.5) 2 2 2 1 3
2 2 5 6

ˆ[ ( ) ( )]) ~ ( ) ( )2F z F z n C C n zφ− − −− +E , 

where the symbol “~” indicates that the quantity on the right-hand side is the leading term of an 

asymptotic expansion.  The constants C  do not depend on  or .  The terms involving C , 

, and  correspond to the bias of the bootstrap estimator, and the terms involving C , , 

and  correspond to the variance.  As will be discussed in Section 3.2.1, the variance terms are 

smaller if the blocks are overlapping than if they are non-overlapping.  It follows from (3.3)-(3.5) 

that the asymptotically optimal block length (in the sense of minimizing the AMSE) is  

for bias or variance estimation,  for estimating a one-sided distribution function, and 

 for estimating a symmetrical distribution function.  The corresponding minimum 

asymptotic RMSE’s are proportional to n  for bias or variance estimation,  for 

estimating a one-sided distribution function of a normalized statistic, and  for estimating a 

symmetrical distribution function of a normalized statistic.  These results hold for overlapping 

and non-overlapping blocks.  By contrast, the errors made by first-order asymptotic 

approximations are  for estimating a bias, variance or one-sided distribution function; 

and  for estimating a symmetrical distribution function. With data that are a random 

sample from a distribution, the bootstrap’s asymptotic RMSE’s are O n  for bias or variance 

estimation,  for estimating a one-sided distribution function and  for estimating 

a symmetrical distribution function.  Thus, estimation errors of the block bootstrap with the 

asymptotically optimal block length converge to zero more rapidly than do the errors made by 

first-order approximations but less rapidly than do those of the bootstrap for data that are a 

random sample.  The RMSE of the block bootstrap estimator of a symmetrical distribution 

function converges only slightly more rapidly than the RMSE of first-order asymptotic theory. 

j

1/ 4

n 1

4C

1/ 3n

3C

∝

5C

1( −

2

∝

3/ 4−

6C

1/ 5n

O n

n∝

4 / 3− n

6 / 5n−

2 )

3/ 2(O n−

1/ 2(O n−

)

)

)

)

3/( −

1(O n−

 Zvingelis (2001) has extended these results to the ECP’s of confidence intervals and the 

ERP’s of hypothesis tests based on Studentized statistics.  Zvingelis uses non-overlapping blocks, 

and he assumes that cov( , ) 0i jX X =  whenever | |i j−  exceeds some finite value.  The 
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Studentized statistic that he considers is Tn =
1/ 2[ ( ) ( )]/nn mθ θ µ− ns

)n

, where 

2 ( ) (n n ns mθ θ′= ∇ Σ ∇

1/ 2ˆ [ ( ) (n n nT n mτ θ θ=

m

ns

 and Σ  is defined in (3.1).  The bootstrap analog is 

, where 

n

ˆ ˆ)]/nm− 2 ˆˆ ˆ( )n n ˆ n( )ns mθ θ′= ∇ Σ ∇ m ˆ
n, Σ  is defined in (3.2), and nτ  

is the correction factor defined in Section 3.1.2.  Zvingelis defines an asymptotically optimal 

block length as one that maximizes the rate of convergence of the ECP of a confidence interval or 

the ERP of a test.  To state his results, let ẑα  be the 1 α−  quantile of the distribution of T  

relative to the probability measure induced by block bootstrap sampling.  Then 

n̂

( )a≤ −

)≤ −

1/ 4n∝

3/ 4(1 ) ( )O nα −− =

1/ 4n∝

5 / 4(1 ) ( )O nα −− =

3/( −

5 / 4( −

1( )

4 )

)

P

(| nP

1/ 2( )−

−

1(O n )− 3/ 2( − )

2( )O n−

1/ 2 /n n ns= ∆ 2 ( ) ( )n n n ns m mθ θ′= ∇ Σ ∇

1

0 1
[

n

i j

−
−

= =

2 (n I 0)] / )( )( )n ii X m +n mi j nXΣ = ∑ ∑

I

−

:[

=

,1)

−

[0,1]

−

ω → 0=

| 1u ≥

T 1/ 2 ˆ[ ( ) (n mθ θ− Ê )]m ŝ 2 ˆˆ ˆ( ) ˆ( )s m mθ θ∇′= ∇ Σ

 1.  The asymptotically optimal bandwidth for a one-sided confidence interval or test is 

.  The corresponding ECP and ERP are O n .  Thus, for example,  

. 

ˆnT z

 2.  The asymptotically optimal bandwidth for a symmetrical confidence interval or test is 

.  The corresponding ECP and ERP are O n .  Thus, for example,  

. 

/ 2ˆ|T zα

The errors made by first-order asymptotic approximations are O n  for one-sided 

confidence intervals and tests, and O n  for symmetrical confidence intervals and tests.  Thus, 

the ECP and ERP of block bootstrap confidence intervals and tests converge more rapidly than do 

the ECP and ERP based on first-order approximations.  However, the rates of convergence of the 

block bootstrap ECP and ERP are slower than the rates obtained with the bootstrap for data that 

are a random sample from a population.  These rates are  (sometimes O n ) for one-

sided confidence intervals and tests, and  for symmetrical confidence intervals and tests. 

 Götze and Künsch (1996), Lahiri (1996a), and Inoue and Shintani (2001) have 

investigated the application of the block bootstrap to statistics that are Studentized with a kernel 

covariance matrix estimator and overlapping blocks.  In Götze and Künsch (1996) and Lahiri 

(1996a), the Studentized statistic is T n , where , 

(i ω ′ , 

 is the indicator function, 0  is a kernel function satisfying (0) 1ω =  and ( )uω  

if | , and  is both the block length and the width of the lag window.  The bootstrap version 

of  is , where n ˆ /n nn n n n , n
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1

[ / ] [ / ]

ˆ ˆˆ ˆ ˆ( )(n ij i n j
i j

m X m X m−

=

)n ′Σ = − −∑ , 

[ ]u  denotes the integer part of , u ijm n=  in Götze and Künsch (1996), and m n  

in Lahiri (1996).  In Lahiri (1996), T  is a Studentized slope coefficient of a linear mean-

regression model.  Lahiri gives conditions under which  

(1 | | / )ij i j= − −

n

 . 1/ 2ˆ ˆsup | ( ) ( ) | ( )n n n p
z

D T z T z o n−≡ ≤ − ≤ =P P

In contrast, the error made by the asymptotic normal approximation is O n , so the block 

bootstrap provides an asymptotic refinement.  Götze and Künsch (1996) refine this result.  They 

show that the rate of convergence of  is maximized by using a rectangular kernel function 

1/ 2( − )

nD ω  

and setting .  This yields 1/ 4n∝

3/ 4ˆ ˆsup | ( ) ( ) | ( )n n p
z

T z T z O n ε− +≤ − ≤ =P P  

for any 0ε > .  The rectangular kernel has the disadvantage of not guaranteeing that ˆ
nΣ  is 

positive definite.  This problem can be overcome at the price of a slightly slower rate of 

convergence of  by setting nD 2( ) (1 ) (| | 1)u u I uω = − ≤ .  With this quadratic kernel, 

2 / 3ˆ ˆsup | ( ) ( ) | ( )n n p
z

T z T z O n ε− +≤ − ≤ =P P  

for any 0ε > .  Götze and Künsch (1996) show that an asymptotic refinement cannot be achieved 

with the triangular kernel ( ) (1 | |) (| | 1)u u I uω = − ≤ .  Finally, Götze and Künsch (1996) show that  

1/ 2ˆ( ) 1 (nT z o nα α −≤ = − +P ) , 

where ẑα  is the 1 α−  quantile of the distribution of T  under block bootstrap sampling.  Thus, 

the nonoverlapping block bootstrap provides an asymptotic refinement for the ECP of a one-sided 

confidence interval and the ERP of a one-sided hypothesis test. 

n̂

Inoue and Shintani (2001) have extended the results of Götze and Künsch (1996) and 

Lahiri (1996).  Inoue and Shintani (2001) apply the overlapping-blocks bootstrap to a Studentized 

estimator of a slope coefficient in a (possibly overidentified) linear model that is estimated by 

instrumental variables.  They assume that the block length, , and width of the lag window are 

equal, and they require the rate of increase of  to be faster than  but slower than .  To 

summarize their results, let 

1/ 6n 1/ 4n

ω  be the kernel used in the covariance matrix estimator, and define 

 to be the largest integer such that  q
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0
lim[1 ( )]/ | |q
u

u uω
→

− < ∞ . 

Let  and T , respectively, denote the Studentized slope estimator and its block-bootstrap 

analog.  Let 

nT n̂

ẑα  denote the 1 α−  quantile of the distribution of T  under bootstrap sampling.  

Inoue and Shintani (2001) give conditions under which 

n̂

ˆ( ) 1 ( / ) ( q
nT z O n Oα α −≤ = − + +P )

)

 

and 

 . / 2ˆ(| | ) 1 ( / ) ( )q
nT z o n Oα α −≤ = − + +P

Because of Inoue and Shintani (2001) require the rate of increase of  to exceed , their 

tightest bound on the ERP of a symmetrical test is  where a  at an arbitrarily 

slow rate as .  It is not known whether the bootstrap can achieve an ERP of  when a 

kernel covariance matrix estimator is used for Studentization. 

1/ 6n

1( )−

5 / 6( no a n− n →∞

n →∞ o n

 3.2.1  Relative Accuracy of the Bootstrap with Overlapping and Nonoverlapping Blocks 

 Hall, et al. (1995) and Lahiri (1999) have compared the estimation errors made by the 

overlapping- and non-overlapping-blocks bootstraps.  They find that when the asymptotically 

optimal block length is used for estimating a bias or variance, then the AMSE is with non-

overlapping blocks is 1.5  times the AMSE with overlapping blocks.  Thus the AMSE is 

approximately 31% larger with non-overlapping blocks.  The rates of convergence of the 

AMSE’s are equal, however.  Hall, et al. (1995) also compare the AMSE’s for estimation of a 

one-sided distribution function of a normalized sample average (that is, for estimating 

).  The AMSE is 1.5  times or 22% larger with non-overlapping 

blocks than with overlapping ones.  The bootstrap is less accurate with non-overlapping blocks 

because the variance of the bootstrap estimator is larger with non-overlapping blocks than with 

overlapping ones.  The bias of the bootstrap estimator is the same for non-overlapping and 

overlapping blocks.  

2 / 3

]z≤1/ 2[ ( ) /nn m µ σ∞−P 1/ 2

 3.3  The Stationary Bootstrap 

 In the stationary bootstrap, the index i of the first observation in a block, iX , is sampled 

from the discrete uniform distribution on { .  The block length  is sampled from the 

geometric distribution.  That is,  for 

1,..., }n

(1 mm= = − 1( ) )p −P p 1,2,...m =  and some .  If (0,1)∈p
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i + > n 1, then the block is { 1,..., , ,..., }i n n iX X X X − + − .  The stationary bootstrap was proposed 

by Politis and Romano (1993), who showed that it generates a stationary bootstrap data series and 

gave conditions under which it consistently estimates the CDF of a smooth function of a sample 

mean.  Lahiri (1999) calculated the AMSE of the stationary bootstrap estimator of a bias or 

variance when p  is optimally chosen.  He found that the AMSE of the stationary bootstrap 

always exceeds the AMSE of the bootstrap with non-stochastic block lengths, regardless of 

whether the blocks are overlapping or non-overlapping.  Indeed, the asymptotic relative efficiency 

of the stationary bootstrap compared to the block bootstrap with non-random block lengths can be 

arbitrarily close to zero.  More precisely, let AMSESB and AMSENR, respectively, denote the 

asymptotic AMSE’s of the stationary bootstrap and the block bootstrap with overlapping or non-

overlapping blocks with non-random lengths.  Then AMSENR/ AMSESB < 1 always and can be 

arbitrarily close to zero.  Lahiri (1999) reports that similar results apply to estimation of distribution 

functions.  Thus, at least in terms of AMSE, the stationary bootstrap is unattractive relative to the 

block bootstrap with fixed-length blocks. 

1( ,...,n nt t X≡

( )( )n nn tρ θ−

( n z∆ ≤P

1,...,i n= + ,..., 1}i i= + −

..., }n nN

,k

z∆ ≤

,( )( ) ]n k nt t z≡ − ≤

)z∆ ≤

1

nN

) )( ) ]}t zθ− ≤

 3.4  Subsampling 

 The block bootstrap’s distortions of the dependence structure of a time series can be 

avoided by using a subsampling method proposed by Politis and Romano (1994) and Politis, et 

al. (1999).  To describe this method, let )nX  be an estimator of the population 

parameter θ, and set ∆ = , where the normalizing factor ( )nρ  is chosen so that 

 converges to a nondegenerate limit at continuity points of the latter.  For 

, let {  be a subset of 1− :jX j n<  consecutive observations taken 

from the sample { : 1,iX i = .  Define  to be the total number of subsets that can be 

formed.  Let  denote the estimator t  evaluated at the k’th subset.  The subsampling method 

estimates  by 

t

( n )P

)

 
1

( ) [
nN

k
G z I ρ

=
∑ . 

 The intuition behind this method is that each subsample is a realization of length  of the 

true DGP.  Therefore,  is the exact sampling distribution of (P ( )( )tρ θ− , and 

(3.6) ( { [ (z I ρ∆ ≤ =P E . 
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( )nG z  is the estimator of the right-hand side of (3.6) that is obtained by replacing the population 

expectation by the average over subsamples and θ  by .  If n is large but  is small, then 

random fluctuations in  are small relative to those in t .  Accordingly, the sampling 

distributions of 

nt / n

nt

)nt( )(tρ −  and ( )( )nn tρ θ−  are close.  Similarly, if nN  is large, the average 

over subsamples is a good approximation to the population average.  These ideas were formalized 

by Politis and Romano (1994), who give conditions under which the subsampling method 

consistently estimates  and the coverage probability of a confidence interval for (∆ ≤P )zn θ . 

 Hall and Jing (1996) investigated the accuracy of the subsampling method for estimating 

one-sided and symmetrical distribution functions of a Studentized, asymptotically normal 

statistic.  Hall and Jing (1996) find that when  is chosen optimally, the rates of convergence of 

the RMSE’s are  and , respectively, for one-sided and symmetrical distribution 

functions.  These rates are slower than those of first-order asymptotic approximations and the 

block bootstrap.  Hall and Jing (1996) also describe an extrapolation technique that accelerates 

the rate of convergence of the RMSE.  This method will now be summarized for the case of 

estimating a one-sided distribution function.  Let t  and  be the statistics based on samples of 

sizes  and , respectively.  Assume that 

1/ 4n− 1/ 3n−

n

)t z

t

(0Nn ( ,1)n ≤ →P

z

 as  with a similar result for 

.  Under regularity conditions, 

n →∞

t ( )nt ≤P  and (t )z≤P  have Edgeworth expansions  

(3.7)  1/ 2 1( ) ( ) ( ) ( ) ( )nt z z n g z z O nφ− −≤ = Φ + +P

and 

(3.8) , 1/ 2 1( ) ( ) ( ) ( ) ( )t z z g z z Oφ− −≤ = Φ + +P

where g  is a polynomial function of  that does not depend on  or .  Solving (3.8) for z n g  and 

substituting the result into (3.7) yields 
1/ 2 1/ 2 1/ 2( ) [1 ( / ) ] ( ) ( / ) ( ) [( ) ]nt z n z n t z O n −≤ = − Φ + ≤ +P P

)

. 

Let  denote the estimator of ˆ (t z≤P ( )t z≤P  that is obtained by subsampling with blocks of 

length .  Hall and Jing (1996) proposed estimating ( )nt z≤P  by 

1/ 2 1/ 2ˆ ˆ( ) [1 ( / ) ] ( ) ( / ) ( )nt z n z n t z≤ = − Φ + ≤P P . 

They showed that the fastest possible rate of convergence in probability of  

is .  This occurs when .  They also used extrapolation to estimate the 

symmetrical probability  and found that the fastest possible rate of convergence in 

ˆ ( ) ( )n nt z t z≤ − ≤P P

2 / 3(pO n− ) 1/ 3n∝

(| | )nt z≤P
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probability of  is O n .  These rates are faster than those of first-

order asymptotic approximations.  However, the rate for estimating a one-sided probability is 

slower than that provided by the block bootstrap.  The rate for estimating a symmetrical 

probability is also slower than that provided by the block bootstrap, at least when {

ˆ (| | ) (| | )n nt z t z≤ − ≤P P 8 / 7(p
− )

}iX  is 

uncorrelated after finitely many lags.  Thus, in terms of rates of convergence of estimation errors, 

subsampling with or without extrapolation does not improve on the block bootstrap. 

4 / 5( )−

 3.5  Modifications of the Block Bootstrap 

 This section describes attempts to improve the performance of the block bootstrap by 

reducing the influence of the “discontinuities” in the bootstrap data series that occur at block 

boundaries.  Carlstein, et al. (1998) proposed sampling blocks according to a data-based Markov 

chain so as to increase the likelihood that consecutive blocks match at their ends.  They gave 

conditions under which this matched-block bootstrap (MBB) reduces the bias of a bootstrap 

estimator of a variance.  However, the MBB increases the rate of convergence of the bias only if 

the DGP is a Markov process.  The MBB does not reduce the variance of the estimator.  

Carlstein, et al. (1998) did not investigate the performance of the MBB for estimating a 

distribution function, the coverage probability of a confidence interval, or the rejection 

probability of a hypothesis test. 

 Paparoditis and Politis (2001) proposed downweighting points ˆ
iX  in the block bootstrap 

data series that are near block endpoints.  They give conditions under which this tapered 

bootstrap procedure increases the rate of convergence of the MSE of the bootstrap estimator of 

 to O n .  This may be contrasted with the rate  that is provided by the 

block bootstrap without tapering.  Paparoditis and Politis (2001) did not investigate the ability of 

the tapered block bootstrap to provide asymptotic refinements for distribution estimation, ECP’s 

of confidence intervals, or ERP’s of hypothesis tests.  Thus, it remains unknown whether the 

MBB or tapered bootstrap can increase the rates of convergence of the errors made by the block 

bootstrap for estimating distribution functions, coverage probabilities, and rejection probabilities. 

1/ 2( )nVar n m 2 / 3(O n− )

4.  Methods That Impose Stronger Restrictions on the DGP 

 This section describes bootstrap methods that make stronger a priori assumptions about 

the structure of the DGP than does the block bootstrap.  In return for stronger assumptions, some 

of these methods achieve higher orders of asymptotic refinement (that is, faster rates of 

convergence of estimation errors) than does the block bootstrap. 
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 4.1  The Sieve Bootstrap for Linear Processes 

 A substantial improvement over the performance of the block bootstrap is possible if the 

DGP is known to be a linear process.  That is, the DGP has the form 

(4.1) 
1

( )i j i j
j

iX X Uµ α µ
∞

−
=

− = − +∑ , 

where ( )iXµ = E  for all i, {  is a sequence of independently and identically distributed (iid) 

random variables, and {

}iU

}iX  may be a scalar or a vector process.  Assume that  and 

that all of the roots of the power series 1 -  are outside of the unit circle.  Bühlmann 

(1997, 1998), Kreiss (1988, 1992), and Paparoditis (1996) proposed approximating (4.1) by an 

AR(p) model in which p = p(n) increases with increasing sample size.  Let {  

denote least squares or Yule-Walker estimates of the coefficients of the approximating process, 

and let {  denote the centered residuals.  The sieve bootstrap consists of generating bootstrap 

samples according to the process 

2
1 jj
α∞

=
< ∞∑

: 1,...,nja j =

1
j

jj
zα∞

=∑

}p

}njU

(4.2) 
1

ˆ ˆ( )
p

i nj i j
j

ˆ
jX m a X m U−

=

− = − +∑ , 

where  and the U  are sampled randomly with replacement from the U .  

Bühlmann (1997), Kreiss (1992, 2000), and Paparoditis (1996) have given conditions under which 

this procedure consistently estimates the distributions of sample averages, sample autocovariances 

and autocorrelations, and the regression coefficients  among other statistics.   

1
1

n
ii

m n X−
=

= ∑ ˆ
j nj

nja

Choi and Hall (2000) investigated the ability of the sieve bootstrap to provide asymptotic 

refinements to the coverage probability of a one-sided confidence interval for the mean of a linear 

statistic when the iX ’s are scalar random variables.  A linear statistic has the form 

1
1

1
1

( 1) ( ,..., )
n

n i
i

n G X Xθ
− +

−
i+ −

=

= − + ∑ , 

where  is a fixed integer and G  is a known function.  Define 1≥ 1[ ( ,..., )]G X Xθ = E .  Choi and 

Hall (2000) considered the problem of finding a one-sided confidence interval for θ , although they 

note that their conclusions also apply to a one-sided confidence interval for ( )H θ , where  is a 

continuously differentiable function with 

H

( ) 0H θ′ ≠ .  

To obtain a confidence interval for θ , define 2 1/ 2[( 1) ( )]nVar nθσ θ θ= − + − .  Then 

 21



2 1

1
(0) 2 [1 ( 1) ] ( )

n

G G
j

j n jθσ γ γ
−

−

=

= + − − +∑ , 

where 1 1( ) cov[ ( ,..., ), ( ,..., )]G j G X X G X Xj jγ + += .  The bootstrap analogs of nθ  and θ  are  

1
1

1
1

ˆ ˆ ˆ( 1) ( ,..., )
n

n i
i

n G X Xθ
− +

−
i+ −

=

= − + ∑  

and , respectively, where 1 1
ˆ ˆ ˆ ˆ[ ( ,..., )]G X Xθ += E Ê  is the expectation operator relative to the 

probability distribution induced by sieve bootstrap sampling.  The variance of 1/ 2 ˆ ˆ( 1) ( nn )θ θ− + −  

conditional on the data is 

2 1

1

ˆ ˆ ˆ(0) 2 [1 ( 1) ] ( )
n

G G
j

j n jθσ γ γ
−

−

=

= + − − +∑ , 

where  and the covariance is relative to the bootstrap 

probability distribution.  Define T n

1 1
ˆ ˆ ˆ ˆˆ ( ) cov[ ( ,..., ), ( ,..., )]G j G X X G X Xγ + +=

1/ 2ˆ ( 1)n

j j

ˆˆ ˆ ˆ( ) /n θθ θ σ−= − + , where ˆ̂
θσ  is a bootstrap estimator 

of ˆθσ , possibly obtained through a double bootstrap procedure.  Let ˆnz α  satisfy 

ˆ ˆ ˆ( ) 1n nT z α α≤ = −P , 

where  denotes the probability measure induced by sieve bootstrap sampling.  Then a lower P̂

)100(1 α−  percent confidence interval for θ  is 1/ 2 ˆˆ( 1)n nn z α θθ σ− θ− − + ≤ , and an upper 

100(1 )α−  percent confidence interval is 1/ 2
,1 ˆˆ( 1)n nn z α θθ σ θ−
−− − + ≥

1( )

.  Choi and Hall (2000) 

gave conditions under which the ECP’s of these intervals are O n ε− +  for any 0ε > .  This is only 

slightly larger than the ECP of O n 1( )−  that is available when the data are a random sample.  Thus, 

in comparison to the block bootstrap, the sieve bootstrap provides a substantial improvement in the 

rate of convergence of the ECP when the DGP is a linear process.   

 4.2  The Bootstrap for Markov Processes 

 Asymptotic refinements of order higher than those provided by the block bootstrap are also 

possible if the DGP is a (possibly higher-order) Markov process or can be approximated by such a 

process.  The class of Markov and approximate Markov processes contains many nonlinear 

autoregressive, ARCH, and GARCH processes, among others, that are important in applications. 

 When the DGP is a Markov process, the bootstrap can be implemented by estimating the 

Markov transition density nonparametrically.  Bootstrap samples are generated by sampling the 
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stochastic process implied by the estimated transition density.  Call this procedure the Markov 

bootstrap (MB).  The MB was proposed by Rajarshi (1990), who gave conditions under which it 

consistently estimates the asymptotic distribution of a statistic.  Datta and McCormick (1995) gave 

conditions under which the error in the MB estimator of the distribution function of a normalized 

sample average is almost surely o n .  Hansen (1999) proposed using an empirical likelihood 

estimator of the Markov transition probability but did not prove that the resulting version of the MB 

is consistent or provides asymptotic refinements.  Chan and Tong (1998) proposed using the MB in 

a test for multimodality in the distribution of dependent data. Paparoditis and Politis (2001) 

proposed estimating the Markov transition probability by resampling the data in a suitable way. 

1/ 2( − )

 Horowitz (2001b) investigated the ability of the MB to provide asymptotic refinements for 

confidence intervals and tests based on Studentized statistics.  To describe the results, let the DGP 

be an order q Markov process that is stationary and geometrically strongly mixing.  As before, let 

the data be { : 1,..., }iX i = n q.  For any ,define j q> 1( ,..., )j j jY X X− −= .  Also define 1( )Xµ = E  

and .  Horowitz (2001b) considered a confidence interval for 1
1

n
ii

X
=∑m n−= ( )H µ , where  is 

a sufficiently smooth function.  The confidence interval is based on the statistic 

H

1/ 2[ ( ) ( )]/n nT n H m H sµ= −  

where 2
ns  is a consistent estimator of the variance of the asymptotic distribution of 

1/ 2 ) ( )]n H m H[ ( µ− .  Thus, for example, a symmetrical 1 α−  confidence interval is  

(4.3) ˆ ˆ( ) ( ) ( )n n n nH m z s H H m z sα αµ− ≤ ≤ + , 

where ˆnz α  is the MB estimator of the 1 α−  quantile of the distribution of | .  Horowitz 

(2001b) used a kernel estimator of the Markov transition density to implement the MB.  The 

estimator is 

|nT

( | ) ( , ) / ( )n nz nyf x y p x y p y= , where 

( 1)
1

1( , ) ,
( )

n
j j

nz fd q
n nn j q

x X y Y
p x y K

h hn q h +
= +

− − 
=  

−  
∑ , 

1

1( )
( )

n
j

ny pdq
nn j q

y Y
p y K

hn q h = +

− 
=  

−  
∑ , 

and fK  and pK

( |

 are kernel functions.  The MB procedure samples the process induced by a 

version of )nf x y  that is trimmed to keep the bootstrap process away from regions where the 

probability density of Y  is close to zero.  Define { : ( ) }n nyC y p y nλ= ≥ , where 0nλ →  at a 
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suitable rate as .  Then the MB process used by Horowitz (2001b) consists of the 

following steps: 

n →∞

+

n

nC

ˆ
jX

1/ 2[ (n H

ˆnz α

1 )ε− +

MB 1.  Draw Y X  from the distribution whose density is 1
ˆ ˆ( ,..., )q q X≡ 1

ˆ
nyp .  Retain Y 1q̂+  

if .  Otherwise, discard the current Y1q̂Y + ∈ nC 1q̂+  and draw a new one.  Continue this process 

until a Y  is obtained. 1q̂+ C∈

MB 2.  Having obtained Y X 1
ˆ ˆ ˆ( ,..., )j j jX q− −≡  for any , draw 2j q≥ + ˆ

jX  from the 

distribution whose density is ˆ( | )n jf Y⋅ .  Retain ˆ
jX  and set Y X1 1

ˆ ˆ ˆ( , )j j j qX...,+ − +=  if 

1
ˆ ˆ( ,..., )j j qX X − + ∈ .  Otherwise, discard the current ˆ

jX  and draw a new one.  Continue this 

process until an  is obtained for which 1)q
ˆ ˆ( ,...,j j nX X C− + ∈ . 

MB 3.  Repeat step 2 until a bootstrap data series { ˆ : 1,..., }jX j =

ˆ ˆ)]/n ns m̂ n=

n  has been obtained. 

Compute the bootstrap test statistic T n , where , 1/ 2ˆ ˆ[ ( ) (H m H µ≡ − 1
1

ˆn
jj

X−
=∑ µ̂  is 

the mean of X  relative to the distribution induced by the sampling procedure of steps MB 1 and 

MCB 2 (bootstrap sampling), and 2
nŝ  is a consistent estimator of the variance of the asymptotic 

distribution of ˆ ) ( )m H ˆ ]µ−  under bootstrap sampling. 

MB 4.  Set  equal to the 1 - α quantile of the empirical distribution of |  that is 

obtained by repeating steps 1-3 many times.   

n̂T |

 For any 0ε > , Horowitz (2001b) gives conditions under which the ECP of the resulting 

symmetrical confidence interval (4.3) is 3/ 2(O n )ε− + .  The ECP for a one-sided confidence 

interval is (O n .  The corresponding ECP’s for confidence intervals based on the block 

bootstrap with the asymptotically optimal block length are  and O n , respectively.  

Thus, the ECP’s of the MB converge to zero more rapidly than do those of the block bootstrap.   

4 / 3(O n− ) )3/ 4( −

These results also apply to approximate Markov processes.  An approximate Markov 

process is a process whose density conditional on the past can be approximated by its density 

conditional on lags of order up to q  with an error of O e  for some b .  The MB for an 

approximate Markov process is implemented by generating bootstrap samples from the estimated 

order  Markov process, where  at a logarithmic rate as n . 

( )bq− 0>

q q →∞ →∞
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 4.3 The Nonparametric Autoregressive Bootstrap 

In this section it is assumed that the DGP is the autoregressive process 

(4.4) 1 1( ,..., ) ( ,..., ) ; 0,1,2,...,i i i p i i q iX g X X X X U iσ− − − −= + =  

where g  and σ  are unknown functions, {  is a sequence of iid random variables with zero 

mean and unit variance, and  are integers.  Equation (4.4) is a nonparametric version of an 

ARCH model.  Allowing the possibility of a non-constant conditional variance function 

(conditional heteroskedasticity) is important in applications in finance (Engle 1982, Bollerslev et 

al. 1992, Gouriéroux 1997).  

}iU

, 1p q ≥

The DGP (4.4) is a Markov process to which the bootstrap procedure of Section 4.2 may 

be applied.  In this section, however, we describe a procedure due to Franke, Kreiss, and 

Mammen (2000) (hereinafter FKM) that takes advantage of the specific structure of (4.4).  This 

procedure generates bootstrap samples by replacing m , σ , and U  in (4.4) with nonparametric 

estimates.  It is assumed that 

i

g , σ , and the distribution of U  are such that { }iX  is strictly 

stationary and strongly geometrically mixing.  See Diebolt and Guegan (1990), Meyn and 

Tweedie (1993), and FKM for regularity conditions that insure these properties. 

 Let the data consist of observations of { : 1,..., }iX i n= .  FKM use Nadaraya-Watson 

kernel estimators of g  and σ .  Other estimators such as local polynomials could also be used.  

In the case that , the estimators are 1p q= =

(4.5) 
1

1
1

1( )
( 1) ( )

n
i

nh i
nh ni

x Xg x X K
n p x h

−

+
=

 −
=  −  

∑  

and 

(4.6) 
1

2 2
1

1

1( ) [ ( )]
( 1) ( )

n
i

nh i nh i
nh ni

x Xx X g X K
n p x h

σ
−

+
=

 −
= −  −  

∑ , 

where , the kernel, is a probability density function, K

(4.7) 
1

1

1( )
( 1)

n
i

nh
ni

x Xp x K
n h

−

=

 −
=  −  

∑ , 

and  is a sequence of positive constants (bandwidths) that converges to zero as .  

Product kernels may be used when 

{ }nh n →∞

1p >  or . 1q >

 Let r .  As in the Markov bootstrap of Section 4.2, the procedure used to 

generate bootstrap samples based on (4.4) must avoid regions in which the density of 

 is close to zero.  In addition, the estimates of 

max( , )p=

)i rX −

q

1( ,...,iX − g  and σ  that are used to generate 
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bootstrap samples must be based on a bandwidth h  that converges to zero more slowly than h  

so that  as .  To this end, let 

n̂

ˆnh

n

ˆ /n nh h →∞ n →∞ g  and ˆnhσ , respectively, denote estimates of 

g  and σ  based on the bandwidth .  Let n̂h ˆnhg  and ˆnhσ  denote ˆnhg  and ˆnhσ  restricted to a 

compact set  on which the density of (C 1X ,...,i )i rX− −  exceeds zero.  Let { }iν  denote the 

residuals  corresponding to points ˆ{ (nhX g− 1,.i iX − .., iX − )}q 1,..iX( ., )i rX− −  in .  Then 

bootstrap samples are generated by the recursion 

C

ˆ ˆ (nh
ˆ ˆ(i inh

ˆ )i p
ˆ ,...i

ˆ ) ˆ ,q,..., , i iX g X

ˆ{ }iU

X− − X Uσ= + − −

iν

1 ( 1( ,..., ,..., )rX X X X= g

nh

g ĝnh ˆnhσ

P̂ py qy

( ,p ...,x x 1)( ,...,qx x

1/( ) )2 ˆ[ ( 1/ 2( )ˆˆsup { ) {] } ( ) ( )] } 0p p p≤n nhg yp p− ≤ − n nh py pynhg y
z

nh z nh g g− zP P

1/) )q nhs2 ˆ[ (n nhs y 1q q / 2)n sˆ (yˆsup {(
z

nh ] (z h} {− )q σ (nh y y− )]q z}≤ 0pnP P

g σ

g

g 3/ 2)(log

1o

/(n n )n

g )n −

1 1X  

where  is obtained by sampling the standardized ’s randomly with replacement.  The 

process is initialized by setting ˆ ˆ )r .  Bootstrap estimators of  and σ  are 

obtained by applying (4.5)-(4.7) with the bandwidth  to the bootstrap sample.  Denote the 

resulting bootstrap estimators of  and σ  by  and .   

Let  denote the probability measure induced by bootstrap sampling.  Let  and , 

respectively, denote the vectors 1)  and .  FKM give conditions under which  

( [ →  

and 

) [ (q− ≤ → . 

Hafner (1996) and Härdle et al. (2001) use this nonparametric autoregressive bootstrap procedure 

to construct pointwise confidence intervals for  and .  Franke, Kreiss, Mammen, and 

Neumann (2000) give conditions under which the nonparametric autoregressive bootstrap can be 

used to obtain uniform confidence bands for  and to carry out inference about the parameters of 

a misspecified (finite-dimensional) parametric model.  Neumann and Kreiss (1998) use a wild-

bootstrap version of the nonparametric autoregressive bootstrap to test parametric models of the 

conditional mean and variance functions.  In addition, they give conditions under which the ECP 

of a uniform confidence band for  converges to zero at the rate .  In 

contrast, first order asymptotic approximations yield the rate (l

1/ 4h

 (Hall 1991).  Kreiss, 

Neumann, and Yao (1998) also use the nonparametric autoregressive bootstrap for testing.   
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4.4  The Periodogram Bootstrap 

 In this section, it is assumed that the data are generated by a stationary, univariate process 

with mean zero and the possibly infinite-order moving average representation 

(4.8) i k
k

X b i kξ
∞

−
=−∞

= ∑ . 

The innovations { }iξ  are iid with ( ) 0iξ =E , 2( )iξ 1=E , and 5( )iξ < ∞E .  It is also assumed that 

the coefficients {  satisfy }kb | |kkb
=−∞

.
k
∞

< ∞∑    

We begin by considering the problem of estimating the distribution of a kernel estimator 

the spectral density at frequency ω , ( )f ω .  To construct the estimator, let 

2
1

1
( ) ,

n
k

n k
k

I n X eι ωω π ω π−

=

≡ −∑ ≤ ≤  

with 1ι = −  denote the periodogram of the sample { : 1,..., }iX i n= .  Let N  denote the largest 

integer that is less than or equal to , and define the frequencies / 2n 2 /k k nω π= , N k N− ≤ ≤ .  

Then the kernel estimator of ( )f ω  is given by 

1( ; ) ( )
N

k
n n n k

n nk N
f h K I

nh h
ω ω

ω ω
=−

 −
=  

 
∑ , 

where the kernel function  is symmetrical and non-negative, and {  is a sequence of 

bandwidths that converges to zero as .  We seek an estimator of the probability 

distribution of T h

K

nh

}nh

n →∞

) (nh f1/ 2( , ) ( ) [ ( , )]/ ( )n n n nf fω ω ω≡ − ω . 

 Franke and Härdle (1992) (hereinafter FH) proposed using a frequency domain version of 

the bootstrap to estimate the distribution of T ( , )n nhω .  Nordgaard (1992) and Theiler et al. 

(1994) considered frequency domain bootstrap methods for Gaussian processes.  Here, we do not 

assume that { }iX  is Gaussian.  The method of FH is based on the relation 

( ) ( ) , 1,...,n k k kI f k Nω ω ε= = . 

The residuals kε  are approximately iid for large .  FH use a scaled version of n

{ ( ) : 1,.. }n kI k ., Nω =  to construct an estimate of { : 1 }k k ,..., Nε = .  They obtain bootstrap samples 

of the kε ’s by sampling the estimates randomly with replacement.  The bootstrap samples are 

used to construct bootstrap estimates of ( )f ω , and the distribution of T ( , )n nhω  is estimated by 
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the distribution of a bootstrap analog that is obtained from the bootstrap estimates of ( )f ω .  FH 

give conditions under which this procedure consistently estimates the distribution of T h( ,n n )ω . 

k

0

 To describe FH procedure more specifically, let .  Also, define bandwidths 

 and , where  and  as .  Define 

1/ 5
nh n−∝

→∞1/ 4
0nh n−∝ 1nh 1 0nh → 1/ 0n nh h → n

0ˆ ( ) / ( ; ), 1,...,k n k n k nI f h k Nε ω ω= = , 

1
1

ˆN
jj

Nε ε−
=

= ∑ , and ˆ / .kε ε ε=   The FH procedure is: 

 FH1.  Draw bootstrap residuals 1*,..., *Nε ε  by sampling 1,..., Nε ε  randomly with 

replacement.  

 FH2.  Compute the bootstrap periodogram values 1*( ) ( , ) *n k n k nI f hω ω ε≡ . 

 FH3.  Compute the bootstrap spectral density estimate 

1
1*( ; , ) *( )

N
k

n n n n k
n nk N

f h h K I
nh h

ω ω
ω ω

=−

 −
=  

 
∑ . 

FH give conditions under which 

1/ 2 1/ 2 1 1

1

( ; ) ( ) *( ; , ) ( ; )( ) ,( )
( ) ( ; )

pn n n n n n n
M n n

n n

f h f f h h f hd nh nh
f f h

ω ω ω ω
ω ω

 − −
→ 

 
 

as , where n →∞ Md  is the Mallows metric.  This result implies that the bootstrap distribution of 

1/ 2 1 1
0 1

1

*( ; , ) ( ; )*( ; , , ) ( )
( ; )

n n n n n
n n n n n

n n

f h h f hT h h h nh
f h

ω ω
ω

ω
−

≡  

consistently estimates the distribution of T ( ; )n nhω  (Bickel and Freedman 1981).  That is 

0 1
ˆsup | [ *( ; , , ) ] [ ( ; ) ] | 0p

n n n n n n
z

T h h h z T h zω ω≤ − ≤ →P P  

as . n →∞

 Dahlhaus and Janas (1996) (hereinafter DJ) applied a modified version of the FH 

procedure to a class of ratio statistics that includes sample autocorrelation coefficients and a 

normalized estimate of the spectral density function.  DJ give conditions under which the 

difference between the CDF of a normalized ratio statistic and the CDF of a bootstrap analog is 

uniformly  almost surely.  By contrast, the error made by the asymptotic normal 

approximation to the CDF of a normalized ratio statistic is , so the frequency domain 

bootstrap provides an asymptotic refinement under the conditions of DJ (1996).  Some of these 

conditions are quite restrictive.  In particular, 

1/ 2(o n− )

)1/ 2(O n−

iX  must have a known mean of zero, and the 
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innovations must satisfy .  DJ point out that the asymptotic refinement is not achieved 

if these conditions do not hold.  In addition, DJ assume that the variance of the asymptotic 

distribution of the ratio statistic is known. 

3( ) 0iξ =E

 Kreiss and Paparoditis (2000) describe a procedure called the autoregressive aided 

periodogram bootstrap (AAPB).  In this procedure, bootstrap samples { ˆ }iX  are generated using 

the sieve procedure of Section 4.1.  These samples are used to calculate a bootstrap version of the 

periodogram and bootstrap versions of statistics that are functionals of the periodogram.  Kreiss 

and Paparoditis (2000) give conditions under which the AAPB procedure consistently estimates 

the distribution of ratio statistics and statistics based on the integrated periodogram.  These 

conditions are sufficiently general to permit application of the AABP to moving average 

processes that are not invertible and, therefore, do not have an autoregressive representation.   

5.  Conclusions 
 The block bootstrap is the best known method for implementing the bootstrap with time-

series data when one does not have a finite-dimensional parametric model that reduces the DGP 

to independent random sampling.  The block bootstrap makes relatively weak assumptions about 

the structure of the DGP, but its ERP’s and ECP’s converge to zero only slightly faster than those 

of first-order asymptotic approximations.  Faster rates of convergence can be achieved by 

imposing additional structure on the DGP.  It is an open question whether it is possible to develop 

methods that are more accurate than the block bootstrap but impose less structure on the DGP 

than do the Markov bootstrap and the sieve bootstrap for linear processes.  This is a question of 

considerable practical importance that merits further research.  First-order asymptotic 

approximations are often inaccurate with the sample sizes encountered in applications, and the 

bootstrap is one of the few practical methods that has the potential to achieve significantly better 

accuracy. 

 The existing theoretical explanation of the bootstrap’s ability to provide asymptotic 

refinements is based on Edgeworth expansions.  This theory is an imperfect tool for 

understanding the performance of the bootstrap, and the imperfections limit the theory’s 

usefulness for developing improved bootstrap methods for time-series.  If the DGP is GSM, then 

the parameters  that enter the Edgeworth expansions (2.1) and (2.2) can be estimated 

analytically with errors that are only slightly larger than O n .  By substituting these 

estimates into an analytic Edgeworth expansion, one can obtain theoretical ECP’s and ERP’s that 

are comparable to or smaller than those of the block, sieve and Markov bootstraps.  In Monte 

κ

1/ 2( − )

 29



Carlo experiments, however, analytic Edgeworth expansions are often much less accurate than 

the bootstrap.  Thus, Edgeworth expansions are imperfect guides to the relative accuracy of 

alternative methods for achieving asymptotic refinements.  This is a serious problem for research 

on bootstrap methods for time series because comparing the relative accuracies of alternative 

bootstrap approaches is an essential element of this research.  Accordingly the development of a 

more complete theory of the performance of the bootstrap is a potentially important, though 

undoubtedly very difficult, area for future research.  
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