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The Stationary Bootstrap

This article introduces a resampling procedure called the stationary bootstrap as a means of calculating standard errors of estimators
and constructing confidence regions for parameters based on weakly dependent stationary observations. Previously, a technique
based on resampling blocks of consecutive observations was introduced to construct confidence intervals for a parameter of the m-
dimensional joint distribution of m consecutive observations, where m is fixed. This procedure has been generalized by constructing
a “blocks of blocks” resampling scheme that yields asymptotically valid procedures even for a multivariate parameter of the whole
(i.e., infinite-dimensional) joint distribution of the stationary sequence of observations. These methods share the construction of
resampling blocks of observations to form a pseudo-time series, so that the statistic of interest may be recalculated based on the
resampled data set. But in the context of applying this method to stationary data, it is natural to require the resampled pseudo-time
series to be stationary (conditional on the original data) as well. Although the aforementioned procedures lack this property, the
stationary procedure developed here is indeed stationary and possesses other desirable properties. The stationary procedure is based
on resampling blocks of random length, where the length of each block has a geometric distribution. In this article, fundamental
consistency and weak convergence properties of the stationary resampling scheme are developed.
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1. INTRODUCTION

The bootstrap of Efron (1979) has proven to be a powerful
nonparametric tool for approximating the sampling distri-
bution and variance of complicated statistics based on iid
observations. Recently, Kiinsch (1989) and Liu and Singh
(1992) have independently introduced nonparametric ver-
sions of the bootstrap and jackknife that are applicable to
weakly dependent stationary observations. Their resampling
technique amounts to resampling or deleting one-by-one
whole blocks of observations, to obtain consistent procedures
for a parameter of the m-dimensional marginal distribution
of the stationary series. Their resampling procedure has been
generalized by Politis and Romano (1992a, 1992b) and by
Politis, Romano, and Lai (1992) by resampling “blocks of
blocks” of observations to obtain asymptotically valid pro-
cedures even for multivariate parameters of the whole (i.e.,
infinite-dimensional) joint distribution of the stationary time
series.

In this article we introduce a new resampling method,
called the stationary bootstrap, that is also generally appli-
cable for stationary weakly dependent time series. Similar
to the block resampling techniques, the stationary bootstrap
involves resampling the original data to form a pseudo-time
series from which the statistic or quantity of interest may be
recalculated; this resampling procedure is repeated to build
up an approximation to the sampling distribution of the sta-
tistic. In contrast to the aforementioned block resampling
methods, the pseudo-time series generated by the stationary
bootstrap method is actually a stationary time series. That
is, conditional on the original data X, . .., Xy, a pseudo-
time series X T, ..., X ¥ is generated by an appropriate
resampling scheme that is actually stationary. Hence this
procedure attempts to mimic the original model by retaining
the stationarity property of the original series in the resam-
pled pseudo-time series. As will be seen, the pseudo-time
series is generated by resampling blocks of random size,
where the length of each block has a geometric distribution.

In Section 2 the actual construction of the stationary
bootstrap is presented and comparisons are made with the
block resampling method of Kiinsch (1989) and Liu and
Singh (1992). Some theoretical properties of the method are
investigated in Section 3 in the case of the mean. In Section
4 it is shown how the theory may be extended beyond the
case of the mean to construct asymptotically valid confidence
regions for general parameters.

2. THE STATIONARY BOOTSTRAP
RESAMPLING SCHEME

Suppose that {X,, n € Z} is a strictly stationary and
weakly dependent time series, where the X, are for now as-
sumed real-valued. Suppose that u is a parameter of the whole
(i.e., infinite-dimensional) joint distribution of the sequence
{X., n € Z}. For example, u might be the mean of the
process or the spectral distribution function. Given data X,
... Xy, the goal is to make inferences about u based on
some estimator Tn = Ty(X,, . .. Xy). In particular, we are
interested in constructing a confidence region for u. Typi-
cally, an estimate of the sampling distribution of Ty is re-
quired, and the stationary bootstrap method proposed here
is developed for this purpose. In general, we are led to con-
sidering a “root” or an approximate pivot Ry = Ry(X,.. .,
Xu; 1), which is just some functional depending on the data
and possibly on u as well. For example, Ry might be of the
form Ry = Ty — p or possibly a studentized version. The
idea is that if the true sampling distribution of Ry were
known, then probability statements about Ry could be in-
verted to yield confidence statements about u. The stationary
bootstrap is a method that can be applied to approximate
the distribution of Ry. To describe the algorithm, let

B, = {Xi,Xi+1, --~:Xi+b—1} (1)

be the block consisting of b observations starting from X;.
In the case j > N, X; is defined to be X;, where i = j(mod N)
and X, = Xy. Let p be a fixed number in [0, 1]. Independent
of Xi,...,Xylet L, L,, ...be asequence of iid random
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variables having the geometric distribution, so that the prob-
ability of the event {L; = m} is (1 — p)™ 'p for m = 1,
2, ....Independent of the X; and the L;,let I;, I,,...bea
sequence of iid variables that have the discrete uniform dis-
tribution on {1, ..., N}. Now, a pseudo-time series X |,
..., X %is generated in the following way. Sample a sequence
of blocks of random length by the prescription By ;,
.. The first L, observations in the pseudo-time
series X ¥, ..., X x are determined by the first block
By, 1, of observations Xj, ..., Xp.r,-1, and the next L,
observations in the pseudo-time series are the observations
in the second sampled block By,;,, namely Xj, ...,
X 41,1 Of course, this process is stopped once N obser-
vations in the pseudo-time series have been generated
(though it is clear that the resampling method allows for
time series of arbitrary length to be generated). Once X T,
..., X ¥ has been generated, compute Th(X T, ..., X¥)
or RW(X T, ..., X¥; Ty) for the pseudo-time series. The
conditional distribution of Ry(X T, ..., X N; Twn) given X,
..., Xnis the stationary bootstrap approximation to the true
sampling distribution of Ry(X1, . .., Xy, u). By simulating
alarge number B of pseudo—-time series in the same manner,
the true distribution of Ry(Xj, ..., Xy; u) can be approx-
imated by the empirical distribution of the B numbers
Ry(XT,..., X% Tw).

An alternative and perhaps simpler description of the re-
sampling algorithm follows. Let X T be picked at random
from the original N observations, so that X | = X;,. With
probability p, let X 5 be picked at random from the original
N observations; with probability 1 — p, let X3 = X; 1, so
that X 5 would be the “next” observation in the original
time series following Xj,. In general, given that X ¥ is de-
termined by the Jth observation X, in the original time series,
let X %, be equal to X/, with probability 1 — p and picked
at random from the original N observations with probabil-
ity p.

By, -

Proposition 1. Conditional on X, ..., Xy, XT, X3,
..., X % is stationary.

Much more is actually true. For example, if the original
observations Xj, . . . , Xy are all distinct, then the new series
X¥, ... X% is, conditional on X;, ..., Xy, a stationary
Markov chain. If, on the other hand, two of the original
observations are identical and the remaining are distinct,
then the new series X T, ..., X ¥ is a stationary second-
order Markov chain. An obvious generalization, depending
on the number of identical subsequences of observations,
can be made. In fact, if m is the largest b such that, for some
i distinct from j (and both i and j between 1 and N), B;,
and B;, are identical (and m = 0 if all observations are dis-
tinct), then the series X ¥, ..., X ¥isa(m + 1)-order Mar-
kov chain.

The stationary bootstrap resampling scheme proposed here
is distinct from that proposed by Kiinsch (1989) and Liu
and Singh (1992). Their “moving blocks” method is de-
scribed as follows. Suppose that N = kb. Resample with
replacement from the blocks B 4, - - . , By—p+1,5 1O get K re-
sampled blocks, say BT, ..., By. The first b observations
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in the pseudo-time series are the sequence of b values in
BT, the next b observations in the pseudo-time series are
the b values in B, and so on. In the case, N is not divisible
by b, let k be the smallest integer satisfying bk > N. Resample
kblocks as previously to generate X T, . . ., X }. Now simply
delete the observations X | for j > N.

Some of the similarities and differences between the sta-
tionary bootstrap and the moving blocks bootstrap algo-
rithms should be apparent. To begin, the pseudo-time series
generated by the moving blocks method is not stationary.
Both methods involve resampling blocks of observations. In
the moving blocks technique, the number of observations
in each block is a fixed number b. In the stationary bootstrap
method, the number of observations in each block is random
and has a geometric distribution. The methods also differ in
how they deal with end effects. For example, because there
is no data after Xy, the moving blocks method does not
define a block of length b beginning at Xy (if b > 1). To
achieve stationarity for the resampled time series, the sta-
tionary bootstrap method “wraps” the data around in a
“circle,” so that X, “follows” Xy.

Variants on the stationary bootstrap based on resampling
blocks of random length are possible. Instead of assuming
that the L; have a geometric distribution, one can consider
other distributions. Alternative distributions for the I; can
be used as well. In this way the moving blocks may be viewed
as a special case. The choice of L; having a geometric dis-
tribution and I; as the discrete uniform distribution was made
so that the resampled series is stationary. Of course, other
resampling schemes achieve stationary for the resamples se-
ries. For example, one could take the series X T, ..., X ¥
as previously constructed and add an independent series
Z¥, ..., Z%toit, as a “smoothing” device. For the sake
of concreteness, attention will focus on the particular scheme
that we initially proposed.

Another way to think about the difference between the
moving blocks method and the stationary bootstrap is as
follows. For each fixed block size b, one can compute a
bootstrap distribution or an estimate of standard error of an
estimator. The stationary bootstrap method proposed here
is essentially a weighted average of these moving blocks
bootstrap distributions or estimates of standard error, where
the weights are determined by a geometric distribution. It is
important to keep in mind that a difficult aspect in applying
these methods is how to choose b in the moving blocks
scheme and how to choose p in the stationary scheme. In-
deed, the issue becomes a “smoothing” problem.

3. THE MEAN

In this section, the special case of the sample mean is
considered as a first step to justify the validity of the stationary
bootstrap resampling scheme. Let u = E(X;) and set Tx( X,
..., Xy)=Xy=N"12Z¥, X;. Note that under stationarity,
if 0% is defined to be the variance of N'/2X, then

N
ok =var(X;)+2 >

i=1

(1 - %)COV(XI,'XHi)- P

Under the assumption that 2 2, |cov(X;, X;)| < oo, which



Politis and Romano: The Stationary Bootstrap

is implied by typical assumptions of weak dependence, it
follows that 6% — ¢2 as N = oo, where

0% = var(X;) + 2 E cov(Xy, Xi4i).

i=1

(3)

Moreover, we typically have that Ry(X;, ..., Xy; u)
= N'2(Xy — u) tends in distribution to the normal distri-
bution with mean 0 and variance ¢ . A primary goal of this
section is to establish the validity of the stationary bootstrap
approximation defined by the conditional distribution of
Ry(XT,..., X%; Xy)given the data.

As a first step toward this end, and of interest in its own
right, we first consider the mean and variance of N'/2X %
(conditional on the data), where X ¥ = N™! Z¥, X ¥. Be-
cause E(X T | Xy, ..., Xy) = Xy, a trivial consequence of
stationarity is E(X ¥ | X1, . .., Xy) = Xy. Because the true
distribution of N'/?2(Xy — p) has mean 0, it follows that the
bootstrap approximation to the sampling distribution of

NY2(Xy — w) has this same mean.

Remark 1. For the moving blocks scheme, it is not the
case that E(X % | X3, . .., Xy) = Xy. It is easy to see that
E(Ylthl, LY ,XN)

2 i(XG + X)) + b SE X, @
(N=-b+1)b '
Thus if 5/N > 0as N —> oo, E(X¥| X1, ..., Xy) = Xy

+ Op(b/N). To see why, simply calculate the mean and
variance of E(X % | Xy, ..., Xy) — Xy with the aid of (4) or
see the proof of (iii) in theorem 6 of Liu and Singh (1992).
In summary, the moving blocks bootstrap approximation to
the sampling distribution of N'/2(Xy — p) has a mean that
is Op(b/N'/?) as N > oo and b/N — 0. As demonstrated
by Liu and Singh (1992), to achieve consistency of the mov-
ing blocks bootstrap estimate of variance of N'/2Xy, it is
necessary that b — oo as N = oo . Moreover, Kiinsch (1989)
proved that the choice b oc N'/3 is optimal to minimize the
mean squared error of the moving blocks bootstrap estimate
of variance. For such a choice, the moving blocks boot-
strap distribution is centered at a location, Op(b/N'/?)
= Op(N~'/¢), which tends to zero quite slowly. Thus one
cannot expect the moving blocks bootstrap to possess any
second-order optimality properties, at least not without cor-
recting for the bias by recentering the bootstrap distribu-
tion. One possibility is to approximate the distribution of
N'/2(Xy — p) by the (conditional) distribution of N'/?[X ¥
— E(X¥%|Xi,...,Xx~)](seeLahiri 1992). Such an approach
may be satisfactory in the case of the mean, but it weakens
the claim that the bootstrap is supposed to be a general pur-
pose “automatic” technique. Moreover, this approach would
not work as well outside the case of the mean. That is, in
the general context of estimating a parameter u by some
estimator Ty = Ty(X;, . .., Xy), consider the approximation
to the sampling distribution of N'/2(Ty — ) by the (con-
ditional) distribution of N} [Tx — E(T%| X1, ..., X»],
where Th = Tn(X T, ..., X%). In this case the approxi-
mating bootstrap distribution necessarily has mean 0 and
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hence does not account for the bias of T as an estimator of
u (unless T has zero bias).

Remark 2. In fact, if we consider the more general (pos-
sibly nonstationary) resampling scheme where the L;’s are
iid with a common (possibly nongeometric) distribution, but
the I;’s are iid uniform on {1, . . . , N}, then the conditional
mean of X % is Xy. In particular, a close cousin of the moving
blocks bootstrap scheme that yields the correct (conditional)
mean for the corresponding bootstrap distribution is obtained
by letting L; be the distribution assigning mass one to a fixed
b (see Politis and Romano 1992c).

We now consider the stationary bootstrap estimate of
variance of N'/2Xy defined by 6% , = var(N'2X } | Xy, .. .,
Xy). In Lemma 1, a formula for 6%, is obtained, so that
&%, may be calculated without resampling. In the lemma,
%.p1s given in terms of the circular autocovariances, defined
by

. 1 X _ _
Cw(i) = N 2 (X = Xm) (X — Xn)],
J=1

and the usual covariance estimates,

1Y _ _
Ru(i) = N E [(X; — Xp)(Xji — X))
Lemma 1.
. Nl i .
Ghp=Cn0)+2 X (1 - ]T/)(l —p)'Cu(i). (5)
i=1
Alternatively,
~ N_l ~
6%, = Rn(0) +2 X by(i)Rn(i), (6)
i=1
where
N P A PRI DR
by(i) = (1 N)(l p)+ N(l p) . (7

Evidently, Lemma 1 tells us that the bootstrap estimate
of variance 6% ,, given by (6), is closely related to a lag win-
dow spectral density estimate of /(0), where f( - ) is the spec-
tral density of the original process. Assuming that f( - ) exists
(which it does under summability of covariances), f(0) is
simply o2 /2w, where o2 is given by (3). Hence 1t is clear
that, accounting for the factor 1/2x, estimating % or ¢%
[given in (2)] is equivalent to estimating f(0) in a first-order
asymptotic sense. We now prove a consistency property of
&%.p- Although many authors have developed theorems on
the consistency properties of spectral estimates, including
Priestley (1981), Zurbenko (1986), and Brillinger (1981),
none fits easily in our framework. In Theorem 1, x4(s, r, v)
is the fourth joint cumulant of the distribution of (xj, Xjers
Xi+ss X +s+r+v)- The assumptions of the theorem are similar
to those used by Brillinger (1981) and Rosenblatt (1984).

Theorem 1. LetX;,X,,...beastrictly stationary process
with covariance function R( - ) satisfying R(0) + 2, | rR(7)|
< oo. Assume that p = py = 0, Npy = o0, and
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E |K4(u’ v, W)l =K< oo.

u,v,W

®)

Then the bootstrap estimate of variance &%,,,,N tends to o2
in probability.

In fact, with only slightly more effort, it can be shown
that, under the same conditions of Theorem 1, 6%,,, tends
to o2 in the sense E(6% ,, — 6%)*> — 0. The proof actually
shows much more. In particular [see (19)],

E(6%,p) = 0k — 2pv 2 iR(1) + o(pN)

=1

®

and var(6%,,y) = O(1/Npy). Consequently, if the goal is to
choose p = py so that the mean squared error of 6% ,, as an
estimator of ¢% is minimized, then the order of the squared
bias, p%. should be the same order as the variance, (Npy) .
This occurs if py oc N~'/3. The calculation also points toward
the difficulty in choosing p optimally. For if the goal remains
minimizing the mean squared error of 6% ,, then py should
satisfy N'/3py — ¢, where the constant ¢ depends on intricate
properties of the original process, such as ;iR (7). Estimation
of this constant ¢ appears difficult. Fortunately, fundamental
consistency properties of the bootstrap are unaffected by not
choosing p optimally. It is important to have p tending to 0
at the proper rate to achieve second-order properties, but
getting the constant ¢ right seems to enter in third-order
properties.

Remark 3. We now compare the stationary bootstrap
estimate of variance, 63, ,, with the moving blocks bootstrap
estimate of variance. Suppose, for simplicity, that N = kb.
Then the moving blocks bootstrap estimate of variance is k/
Nevar(XT + -+« + X} | Xy, ... Xy), where (X7, ...,
X ¥)is a block of fixed length b chosen at random from B, 5,
. . . By_pp. Except for end effects, the moving blocks bootstrap
estimate of variance is equivalent to m%,, = b~ 'var(S; | X,
..., Xn), where S;; is the sum of the observations in B;
defined in (1) and I is chosen at random from {1,..., N}.
By an argument similar to Lemma 1,

i b1 i\
my,=Cn0)+2 2 (1 - B)CN(i)- (10)
i=1

Comparing m%,, with 6%, in (5), the two are quite close, in
view of the approximation (1 — iN"')(1 — p)' =~ | — ip,
provided that p~! is approximately b. Intuitively, the sta-
tionary bootstrap scheme samples blocks of random length
1/p, so the two approaches are roughly the same if the ex-
pected number of observations in each resampled block is
the same for both methods. To further substantiate the claim
that m#%, ~ 6% ,if p = 1/b, note that Kiinsch’s expansion
for the bias of the moving blocks estimate of variance exactly
coincides with (9). In fact, (10) shows that the moving
blocks—and hence also the stationary bootstrap—variance
estimates are both approximately equivalent to a lag window
spectral estimate using Bartlett’s kernel (see Priestley 1981
for details). But a perhaps more interesting way to view the
two variance estimates is as follows. One can compute
m?, defined by (10) for each b and then average over a
distribution of b values. In particular, compute E(m% ),
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where B (independently) has a geometric distribution with
mean py', yielding
o b-1

E(m¥p)=Cn0)+2 3 X (1 - é)(l — o) pnCn(i)

b=1 i=1

=ChO)+2Y (1 _Zl)')(l — o) pnCn(i)
i=1 b=i+1
= Cw(0) +2 X ba(i) Ca(i),

i=1
where

ba(i) = (1 — pn)* + ipn(1 — pn) ™!

P
X [1og<pN> +3 (’.)(—l)fpf/ﬂ] .

j=1 \J
Because pwlog(py) = 0 as py = 0, by(i) ~ by(i), where
by(i)isgivenin (7). Hence the stationary bootstrap estimate
of variance may be viewed approximately as a weighted av-
erage over b of estimates of variance based on resampling
blocks of fixed length b; this suggests that the choice of p in
the stationary scheme is less crucial than the choice of b in
the moving blocks scheme. Moreover, by an argument sim-
ilar to Theorem 1, var(6% ,, — Mipy) = 0if b = by =1/
D, and the conditions of Theorem 1 are satisfied. The same
claim can be made if m% 4 is replaced by the exact moving
blocks estimate of variance.

Two Simulated Examples. To empirically substantiate
these claims, some numerical examples were considered,
based on simulation. First, observations X1, . . ., X9 wWere
generated according to the model X, = Z, + Z,_, + Z,_,
+ Z,_3 + Z,_4, where the Z, are iid standard normal. Because
20X, ~ 527 Z,, the variance of N'/2Xy, with N = 200,
is very nearly 25. Note that the autocovariances EXy Xy = 0,
for any “lag” k. In Figure 1, the moving blocks and stationary
bootstrap estimates of variance of N'/2Xy are plotted as
functions of block size b and 1/p. Notice that the stationary
bootstrap estimate of variance is much less variable; that is,
it is less sensitive to the choice of p than the moving blocks
bootstrap is to the choice of b.

Next, 200 observations from the model X, = Z, — Z,_,
+ Z,_,— 7Z,_3+ Z,_, were generated, where again the Z, are

25

variance estimate
10
L

100 150 200

block size

Figure 1. The Moving Blocks (Solid Line) and Stationary (Dotted Line)
Bootstrap Estimates.
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iid standard normal. In this case the autocovariances EXo Xy,
for k=1, 2, ..., alternate in sign until they become 0 for
lags k greater than 4. In Figure 2, the moving blocks and
stationary bootstrap estimates of variance of N'/2X are again
plotted as functions of block size b and 1/p. As before, it is
observed that the stationary bootstrap estimate of variance
is much less sensitive to the choice of p than the moving
blocks is to the choice of b. In this second model, the true
(standardized) variance of the sample mean is near 1, and
the stationary bootstrap estimate is nearer to 1 for a wide
range of p values; this behavior has been observed quite gen-
erally in other examples. Note that both Figure 1 and Figure
2 confirm our previous claim that the stationary bootstrap
estimate of variance may be viewed approximately as a
weighted average over b of moving blocks bootstrap estimates
of variance.

We now take up the problem of estimating the distribution
of N'/2(Xy — ), with the goal of constructing confidence
intervals for u. A strong mixing assumption on the original
process will be in force. That is, it is assumed that data X,
..., Xy are observed from an infinite sequence {X,, n
€ Z}. Let ax(k) = sup4 5| P(AB) — P(4)P(B)|, where 4
and B vary over events in the ¢ fields generated by { X, n
<0} and {X,,n=k}.

The bootstrap approximation to the sampling distribution
of N'/2(Xy — p) is the distribution of N'/2(X } — Xy), con-
ditional on X, ..., Xn.

Theorem 2. LetX,, X,,...be astrictly stationary process
with covariance function R(-) satisfying R(0) + 2, |rR(r)|
< co. Assume (8) in Theorem 1. Assume, for some d > 0,
that E| X;|9"? < oo and Xy [ax(k)]¥/?*9) < oo. Then,
o2 given in (3) is finite. Moreover, if ¢, > 0, then

sup,| P{N'*(Xy — p) < x} — ®(x/05)| > 0. (11)

where ®(-) is the standard normal distribution function.
Assume that py = 0 and Npy = oo. Then the bootstrap
distribution is close to the true sampling distribution in the
sense

sups| P{NV2(X % — Xy) = x| Xy, ..., Xn}

— P{N"2(Xy— ) <x}| >0 (12)
in probability.

Remark 4. In Theorems 1 and 2, the condition (8) is
implied by E| X; |%* < 0o and 2 k2 [a(k)]/€) < 0. To
appreciate why, see (A.1) of Kiinsch (1989). Hence the con-
ditions for Theorem 2 may be expressed solely in terms of
a mixing condition and moment condition, without referring
to cumulants. In summary, assume for some ¢ > 0 that
E| X;|%* < 00. Then the mixing conditions are implied by
the single mixing condition ax(k) = O(k™") for some r
> 3(6 + ¢)/e. This condition also implies >, |rR(r)| < co.

The immediate application of Theorem 2 lies in the con-
struction of confidence intervals for u. For example, let gn(1
— «) be obtained from the bootstrap distribution by

P X¥—-Xv=d(l-a)}=1-a.
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Figure 2. The Moving Blocks (Solid Line) and Stationary (Dotted Line)
Bootstrap Estimates.

Due to possible discreteness or uniqueness problems, gy(1
— ) should be defined to be the 1 — « quantile of the (con-
ditional) distribution of X % — Xy; in general, let the | — «
quantile of an arbitrary distribution G be inf{q : G(q) = 1
— a}. Then it immediately follows that the bootstrap interval
[ Xy — dv(1 — a/2), Xy — Gn(/2)] has asymptotic coverage
1 — «. Indeed, the theorem implies gn(1 — a) = o, (1
— a) in probability.

Other bootstrap confidence intervals similarly may be
shown to be asymptotically valid in the sense of having the
correct asymptotic coverage; for example, a simple percentile
method or the bootstrap ¢.

In practice, it is inevitable that a data-based choice for p
would be made. For example, as previously mentioned, if p
is chosen to minimize the mean squared error of 6% ,, then
p should satisfy N3py — C. The constant C will depend on
the spectral density and can be estimated consistently, say
by some sequence Cy. One could then choose Py
= N~'/3Cy. In fact, with some additional effort, Theorem 2
can be generalized to consider a data-based choice for p.
Subsequent work will focus on a proper choice of p. At this
stage, it is clear that as long as p satisfies p = 0 and Np
— o0, the choice of p will not enter into first-order properties,
such as coverage error, of the stationary bootstrap procedure.
Getting the right rate for p to tend to 0 will undoubtedly
enter into second-order properties, but getting “optimal”
constants correct will be a third-order consideration. Such
an investigation, though of vital importance, is beyond the
scope of the present work. A step toward understanding sec-
ond-order properties was presented by Lahiri (1992) in the
case of moving blocks bootstrap.

4. EXTENSIONS

In this section we extend the results in Section 3 to more
general parameters of interest. A basic theme is that results
about the sample mean readily imply results for much more
complicated statistics.

4.1 Multivariate Mean

Suppose that the X; take values in R4, with jth component
denoted by X; ;. Interest focuses on the mean vector, u
= E(X;), having jth component u, = E(X; ;). The definition
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of ax( ) readily applies to the multivariate case. As before,
the stationary resampling algorithm is the same, yielding a
pseudo-multivariate time series X ¥, ..., X % with mean
vector X 3.

Theorem 3. Suppose, for some e > 0, that E| X; ;|*
< oo0. Assume that ax(k) = O(k™") for some r > 3(6 + ¢)/
e. Then N'/2( Xy — u) tends in distribution to the multivariate
Gaussian distribution with mean 0 and covariance matrix
z= (Gi,j)’ where

0i; = cov(Xy, Xi5) +2 2 cov( Xy, Xy ).
k=1

Then if py = 0 and Npy = o,
sup,| P*{|IX ¥ — Xpll < s} — P{lI Xy — p| <s}| >0
(13)

in probability, where || - || is any norm on R¢ and P* refers
to a probability conditional on the original series.

The immediate application of the theorem is the con-
struction of joint confidence regions for u = (1, ..., ug).
Various choices for the norm yield different-shaped regions.
Notice how easily the bootstrap handles the problem of con-
structing simultaneous confidence regions. An asymptotic
approach would involve finding the distribution of the norm
of a multivariate Gaussian random variable having a com-
plicated (unknown) covariance structure. The resampling
approach avoids such a calculation and handles all norms
with equal facility.

4.2 Smooth Function of Means

Again, suppose that the X; take values in R?. Suppose
thatf = (6,,...,0,), where ;= E[h( X;)]. Interest focuses
on 6 or some function fofd. Letfy = (9N,. s 9N,j), where
9N,j =3, hi(X;)/N. Assume moment conditions of the
h;and mixing conditions on the X;. Then, by the multivariate
case, the bootstrap approximation to the distribution of
N'2(8y — ) is appropriately close in the sense

d(P{N'*(8y — 0) < x}, P*{N'?(0% — by) < x}) > 0
(14)

in probability, where d is any metric metrizing weak con-
vergence in R”. Moreover,

d(P{N'"?*(by—0)<x},P{Z=<x})—>0, (15)

where Z is multivariate Gaussian with mean 0 and covariance
matrix X having (i, j) component

COV(Z,‘, Zj) = COV[hi(Xl), hj(Xl)]

+2 2 cov[hi(Xy), hi(Xiwk)]-
k=1

To see why, define Y; to be the vector in R? with jth com-
ponent A;( X;). Then the Y; are weakly dependent if the
original X; are weakly dependent; in fact, ay(k) < ayx(k).
Hence, with a moment assumption on the #;, we are exactly
back in the multivariate case. Now suppose that f'is an ap-
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propriately smooth function from R? to R?, and interest
now focuses on the parameter p = f(f). Assume that f
=fi,...,fq), where fi(y1,. .., ),)is areal-valued function
from R? having a nonzero differential at (yy, ..., ,) = (6,
..., 0,). Let D be the p X g matrix with (i, j) entry df( y;,

.» Vp)/0dy; evaluated at (6, . . ., 6,). Then the following
is true.

Theorem 4. Suppose that fsatisfies the aforementioned
smoothness assumptions. Assume that for some ¢ > 0,
E[h;(X1)]1%** < o0, and that for some r> 3(6 + &)/, ay(k)
= O(k™"). Then, if py = 0 and Npy = o0, (14) and (15)
hold. Moreover,

d(P{N'"[f(by) — f(®)] =< x},
P*{N'[f(b%) — f(B)] = x}) > 0
in probability and
sups| P{1|./(by) = f(8) | < s}
= P*{I/(8%) — fbW) ] = s}| >0

in probability.

As an immediate application, consider the problem of
constructing uniform confidence bands for (R(1), ...,
R(q)), where R(i) = cov(X;, X +;). (To apply the previous
theorem, let W; = (X;, ..., Xjq),for l <i<N'=N-—gq.)
Although even asymptotic distribution theory for even
Gaussian data seems formidable, the stationary bootstrap
resampling approach handles the problem easily. The only
caveat is to note that ¢q is fixed as N > 0.

4.3 Differentiable Functionals

For simplicity, assume that the X; are real-valued with
common continuous distribution function F. Suppose that
the parameter of interest u is some functional 7 of F. A
sensible estimate of F is T(Fy), where Fy is the empirical
distribution of X, ..., Xy. Assume that T is Frechet dif-
ferentiable; that is, suppose that

T(G) = T + [ hed(G = F) + o(IG ~ FI),

for some (influence) function A, centered so that f hr dF
= 0. For concreteness, suppose that || - || is the supremum
norm, but this can be generalized. Then

N'2[T(Fy) — T(F)]

N
= N2 3 he(X;) + o(N'?| Ey = FIl).  (16)

i=1
If for some d > 0, E[hx(X)]**? < o0 and 2 [ax(k)]4/@*9,

then N™'/2 3, hg(X;) is asymptotically normal with mean
0 and variance

E[h%’(Xi)] +2 2 cov[hp(X,), he(X110].
k=1

17)

To handle the remainder term in (16), Deo (1973) has shown
that if 3 k*[ox(k)]'/*>"" < oo for some 0 < 7 < }, then
N'Y2[Fy(+) — F(+)], regarded as a random element of the
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space of cadlag functions endowed with the supremum norm,
converges weakly to Z(+), where Z( - ) is a Gaussian process
having continuous paths, mean 0, and

cov[Z(1), Z(s)]

= E[g(X)g(X)] + 2 Elgi(X1)g(X14i)]
k=1

+ 2 E[g(Xi+1)&(X1)],
k=1

where g,(x) = Ijo4(x) — F(t). Hence Deo’s result implies
that N'/?[T(Fy) — T(F)] is asymptotically normal with
mean 0 and variance given by (17).

The bootstrap approximation to the distribution of
N'?[T(Fy) — T(F)]is the distribution, conditional on X,
oy X, of NV2[T(F¥%) — T(Fy)], where F3% is the em-
pirical distribution of XT, . . . , X ¥ obtained by the stationary
resampling procedure. If the error terms in the differential
approximation of T((F%) are negligible, then it is clear that
the bootstrap will behave correctly, because Theorem 2 is
essentially applicable. The key to justifying negligibility of
error terms is to show p(NY2[F¥(+) — Fx(+)], Z(+))—=> 0
in probability, where p is any metric metrizing weak con-
vergence in the assumed function space. By Theorem 3, it
is clear that the finite-dimensional distributions of
N'Y2[F%(+)— F(-)] will appropriately converge to those of
Z(+). The only technical difficulty is showing tightness of
the bootstrap empirical process. In fact, by an argument
similar to Deo’s, tightness can be shown if Np% — oo. The
technical details will appear elsewhere.

In fact, the foregoing sketchy argument actually applies if
T is only assumed compactly differentiable. For example,
asymptotic validity for quantile functionals follows.

4.4 Linear Statistics Defined on Subseries

Assume that X; € R¥. In this section we discuss how the
stationary bootstrap may be applied to yield valid inferences
for a parameter ¢ € R? that may depend on the whole in-
finite-dimensional distribution of the process.

Consider the subseries S; 4r.r. = (Xg-1)r+15 - - - » Xi—1)L+am)-
These subseries can be obtained from the {X; } by a “win-
dow” of width M “moving” at lag L. Suppose that T 5 1 is
an estimate of u based on the subseries S;arr, sO Tipr
= ¢u(SiaL), for some function ¢ from R to R”. Let
Tyn=28 Tips/Q, where Q = {[(N— M)/L]} + 1; here
[-]1is the greatest integer function. To apply resampling to
approximate the distribution of Ty, just regard (T a1z, - - . »
Toa 1) as a time series in its own right. Note that M, L,
and Q may depend on N. Weak dependence properties of
the original series readily translate into weak dependence
properties of this new series. Hence we are essentially back
into the sample mean setting. A technical complication is
that we are dealing with a triangular array of variables, so
that Theorem 2 must be generalized. By taking this view-
point, one can establish consistency and weak convergence
properties of the stationary bootstrap. Indeed, this approach
has been applied fruitfully in the moving blocks resampling
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scheme by Politis and Romano (1992a, 1992b). To appre-
ciate the applicability of this approach, consider the problem
of estimating the spectral density f(w). Suppose that
T; m.(w) is the periodogram evaluated at w based on data
S; m..- Then, in fact, T(w) is approximately equal to Bart-
lett’s kernel estimate of f(w). Other kernel estimators can
be (approximately) obtained by appropriate tapering of the
individual periodogram estimates. A great advantage of the
resampling approach is that it easily yields simultaneous
confidence regions for the spectral density over some finite
grid of w values. Other examples falling in this framework
are the spectral measure and cross-spectrum, where asymp-
totic approximations to sampling distributions are particu-
larly intractable.

4.5 Future Work

Subsequent work will focus on three important problems.
First, establish theoretical results to construct uniform con-
fidence bands for the spectral measure. The discussion in
Section 4.4 will readily allow one to construct confidence
bands for the spectral measure over a finite grid of w values,
but this is theoretically unsatisfying. By constructing uniform
confidence bands over the whole continuous range of w, a
basis for goodness-of-fit procedures can be established. Sec-
ond, higher-order asymptotics are necessary, especially to
compare procedures, just as in the iid case. Finally, the prac-
tical implementation, especially the choice of p, and the finite
sample validity based on simulations will be addressed.

5. FURTHER NUMERICAL EXAMPLES

In Figure 3, the well-known Canadian lynx data are dis-
played, representing the number of lynx trappings in the
Mackenzie River in the years 1821 to 1934; a histogram of
the data reveals it is skewed and so not normal. Léger, Politis,
and Romano (1992) analyzed the Canadian lynx data, to-
gether with the artificial series Y,, t = 1, ..., 200, where Y,
= X,| X;| + c and the X, series follows the ARMA model

X, — 1.352X,_, + 1.338X,_, — .662.X,_5 + .240.X,_,
=Z,— 27+ .04Z,_,,

with the Zs being independent normal N(0, 1) random
variables (and ¢ = 0). A realization of the Y, series is exhibited

o
[= .
o
©
o
Q |
o
<
o
S
N
o A
1820 1840 1860 1880 1900 1920
year

Figure 3. The Time Series of Annual Number of Lynx Trappings.
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Figure 4. The Artificial Time Series Y.

in Figure 4; a histogram reveals this data is also not normal
due to heavy tails.

In Léger et al. (1992) constructed confidence intervals for
the mean of the Lynx series were constructed using the mov-
ing blocks technique. They also discussed the choice of
(and hence p = 1/b for the stationary bootstrap). The sta-
tionary bootstrap “hybrid” (i.e., based on the approximation
P*{(Vn(T* — T) < x} ~ P{Vn(T — 1) < x}) 95% con-
fidence interval for the mean u of the Lynx data was
[1,233.816, 1,832.719], based on 500 replications with p
= .05. (The sample mean of the Lynx data is 1,538.018.)
This is remarkably close to the Moving Blocks 95% confi-
dence interval of [1,233.37, 1,826.07] presented by Léger et
al. (1992), which was again based on 500 replications with
b = 25. Note that in the stationary bootstrap simulation, p
was chosen such that 1/p ~ b, where the choice of b ~ 25
was explained by Léger et al. (1992).

But we might also consider the median m of the Lynx
data as the parameter of interest. The obvious estimator is
the sample median, which was equal to 771. But we need to
attach a standard error or confidence interval to this estimate.
The stationary bootstrap (i.e., “hybrid”’) 95% confidence in-
terval for the median m of the Lynx data was [242.5, 957],
based on 1,000 replications with p = .05.

Turning to the artificial Y, series, it was mentioned that
the distribution of Y,, for some fixed ¢, is non-Gaussian.
Indeed, it is a two-sided Xx? distribution with 1 degree of
freedom, centered and symmetric around the constant c. By
analogy to the iid case, it is expected that the median and

*
S 1
J
g <«
£ S
3
Q
g o
g =
a o
>
©
<
o
0.0 0.2 04 0.6 0.8
p (probability)

Figure 5. The Stationary Bootstrap Variance Estimate.
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Figure 6. Sample Autocovariance of Y series.

trimmed means would be more efficient than the sample
mean for estimation of the location parameter c, because
the two-sided Xx? distribution with 1 degree of freedom can
be thought of as being “close” to the double exponential
distribution, (as close as the X2 distribution with 1 degree of
freedom is to the X * distribution with 2 degrees of freedom).
For the simulation, the constant ¢ was set to 0, and six dif-
ferent estimators of ¢ were considered: the sample mean, the
median, and the a-trimmed means (i.e., the mean of the
remaining observations after throwing away the [n«] largest
and the [na] smallest ones), with & = .1, .2, .3, and .4.

First, the problem of choosing p for the stationary boot-
strap. To do this, look at the sample mean case, for which
a simple expression of the variance exists:

1 200

Valr(200 p Y’)

1 iy i
= 2—6 (var(Yl) +2 FEI (1 - Ed)COV(YI, Y4 )) .

The stationary bootstrap estimates of the variance of the
sample mean for different choices of p € (0, .8) are pictured
in Figure 5, and the sample autocovariance sequence of the
Y, series is pictured in Figure 6. It is seen that the autoco-
variances for lags greater than 6 are not significantly different
from 0. This would lead to an empirically acceptable choice
of b for the moving block method of the order of 10 (see
Léger, Politis and Romano 1992). By the approximate cor-
respondence of the moving blocks method and the stationary
bootstrap with p = 1/b, the choice of p = .1 is suggested.
Having decided to use p = .1, let us proceed in comparing
the six proposed estimators of ¢. Based on 500 stationary
bootstrap replications, Table 1 reports the stationary boot-
strap estimate of variance of the corresponding estimator,

Table 1. Trimmed Mean Confidence Intervals

P it bootstrap 95% confidence interval
0 .1034 [—.282, .984]

A .0386 [—.089, .662]

2 0159 [-.092, 413]

3 .0094 [—-030, .345]

4 .0050 [—.080, .202]

5 10028 [-.082, .105]
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Figure 7. Bootstrap Distribution of the Y Series Sample Mean.

as well as the 95% bootstrap confidence interval for the pa-
rameter ¢. For compact notation, the mean and the median
were denoted as trimmed means, with « equal to 0 and .5.
It is obvious from the table that the intuition suggesting the
median as most efficient seems to be correct. Indeed, the
median has the smallest (estimated by the stationary boot-
strap) variance, and yields the shortest confidence interval
for c; recall that ¢ was taken to equal O in this simulation.
According to this reasoning, the median should be preferred.

In Figures 7 through 10, the stationary bootstrap histo-
grams of the distribution of the sample mean, the a = .1
and .3 trimmed means, and the sample median of the Y,
series are pictured, based on 1000 bootstrap replications and
p = .1. The bootstrap distribution of the sample median is
clearly the least disperse. Based on the asymptotic theory
justifying the bootstrap approximations to each of the

T T T T T T

30 40 50

10

o 4

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

Figure 8. Bootstrap Distribution of the Y Series .1 Trimmed Mean.
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Figure 9. Bootstrap Distribution of the Y Series .3 Trimmed Mean.
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Figure 10. Bootstrap Distribution of the Y Series Sample Median.

trimmed means, the bootstrap can further be shown to be a
viable method of choosing among competing estimators in
an adaptive manner (see Léger and Romano 1990a,b).

APPENDIX: PROOFS

Proof of Lemma 1.

In the proof, all expectations and covariances are conditional on
X, ..., Xn. Recall L, in the construction of the stationary resam-
pling scheme. Then

E(XTX V)= EXTX Tl Lo > DP(L, > i)

+EXTX Tl L <P, <1i)

M=

=N"'3 XX(1 —p)' + X[ - (1 - p)].

<
[

Hence cov(X ¥, X ¥..) = Cn(i)(1 — p)'. So, by (2) applied to the
X ¥ series,
. N—-1 i .
G, =Cn(0)+2 2 (1 - N)(l — p)'Cy(i),
1=1

yielding (5). To get (6), note that Ry(0) = Cy(0),andif l <i< N
— 1, then Cn(i) = Ry(i) + Ry(N — i). Therefore, by (5),

N-1 .
5%, = Rv(0)=2 X (1 - i)(l — p)'Ru(i)

i=1

)(1 — P)'Ry(N — i).

N—-1 l
+2 1——
z(1-y

Letting j = N — i in the last sum yields the result.

Proof of Theorem 1.

For purposes of the proof, we may assume that E(X;) = 0. Let

N-1

5% = 5kpw = Rno(0) + 2 2 bn(i)Ryo(i),

i=1

5 X, Xj4i/N. By (5),

(A.1)

where Ry (i) =
_ _ N—-1

aIZV,P = S%I,P - X%« - 2X12v E bu(i).
i=1

Under the assumptions, Xy = Op(N7'/2). Also, Z¥5! by(i) < 2/
pn, which implies X % 2 27" by(i) = 0p(1). Hence it suffices to show
the estimator s% in (A.1) satisfies s} — o2 in probability. To ac-
complish this, we show the bias and variance of s% tend to 0. By
(7) and E[Ryo(i)] = (N — i/ N)R(i), it follows that
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N-1 .
E(sH)=RO)+2 3 (1 - N) (1 = pw)'R()
i=1

Nl i\ i N
+2 1— =)= = pn)¥R().
D ( N)N( P¥IR(i)
The absolute value of the last term is bounded above by 2
2, [iR(i)|/N = O(N™"). To handle the first summation, use the
approximation (1 — py)’ =~ 1 — ipy to get this term is
N—-1 N—-1

2 2 R(i) — 2py 2 iR(i) + o(py).

i=1 i=1

(A.2)

Hence E(s%) = ¢% + O(py). To calculate the variance of s%,

by the result (5.3.21) of Priestley (1981) originally due to Bart-

lett (1946), cov[Ryo(i), Ryo(j)] < S/N, where S = 2R(0)
o | R(m)| + K. Now,

N-1 M-l
var(sy,) = 2 2 ba(i)bn(j)cov[Ruo(i), Rno())]
i=—(N=-1) —(N-1)
s oo L= put sk
== 2 2 ba(i)b (])<"__“——’0
N i -1y je—v-1) M on(1 = py)

if Npy = o0 and py — 0. Thus the result is proved.

Proof of Theorem 2

Without loss of generality, assume u = 0. The result (11) follows
immediately from corollary 5.1 of Hall and Heyde (1980). To prove
(12), for now assume the following three convergences hold for the
sequence X, X5, ...:

(C1) NX}/(Npw) >0.
(C2) Cy(0) +2 2;‘21 (1 = p)'Ca(i) > o%,.
© XN 2+

@) w5

(1 = px)""'pv—>0.

l

In (C3), S; s is defined to be the sum of observations in B, , defined
in (1).

Claim. The distribution of N'/2(X % — Xy), conditional on
Xi, ..., Xn, tends weakly to the normal distribution with mean 0
and variance o2, for every sequence X;, X, ... satisfying (C1),
(C2), and (C3).

The proof of this claim will be given in five steps. In the proof,
all calculations referring to this bootstrap distribution will be as-
sumed conditional on X, ..., Xy. Set En,, = (Si,1, +

+ S1,.L.,)/ N, where the I, I, . .. are iid uniform on {1, ..., N}

and the L,, L,, ... are iid geometric with mean 1/py. Let M be
the smallest integer m such that L, + «+ L,, = N. Also, let J,
=L +...Ly_yand J= Ly + J;. Then Ey 4 — X ¥ is just N™!

times the sum of the observations in Bj,, ;,,, after deleting the first
N — J, of them. Let R, be the exact number of observations required
from block By, ;,, so that N observations from the M blocks have
been sampled; that is, R, = N — J,. Also, let R = L,, — R,. Note
that R, conditional on (R,, J,), has a geometric distribution with
mean 1/py. This follows from the ‘“memoryless” property of the
geometric distribution. Hence Ey 3 — X % is equal in distribution
to N~y g, where [ is uniform on {1, ... N}.

Step 1. Show that NY2(Ey, — X %) — 0 in (conditional)
probability. By the foregoing observation, it is enough to show that
the mean and variance of N™'/2S; x tends to 0. But E[S; | R]
= RXN, so that N_I/ZE(SI,R) = NI/ZXN/(NPN) - 0. NOW,

N_lVaI(SI R) = N_IE[Var(SIRl R] + N_'var[E(Serl R)]

But var[E(S; x| R)] = var(RXy) = X %(1 — pw)/p%. Thus, by
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(C1) and Npy = oo, N 'E[var(S;z)|R] = 0, yielding N!
var(S; g) = 0 as well.

Step 2. Show that for any fixed sequence m = my satisfying
Npy/my = 1, the distribution of

—’"”X”) (A.3)

Npn

tends to the normal distribution with mean 0 and variance ¢2,.
Flrst note that E(S;,.,) = Xypn. For 1 < i < my, let Y.
= mN 28y, /N2, Then (A.3) is my’[ ¥y — E(¥,)], and ¥,
=X | Yn,i/my is the average of iid variables. But, as in step 1,

var(YN,,) is the same as the variance of my/N times the variance
of Sy r, where I is uniform on {1, ..., N} and R is geometric with
mean py. Again, apply the relationship

var(Syg) = E[var(S;g| R)] + var[E(S; x| R)]. (A.4)
The second term on the right side of (A.4) is var(RXy) = X %(1

— pn)/P% = 0 by (C1). Also, r~'var(S; x| R = r) is in fact given
by m%,, defined in (10). Thus

Nl/z(EN,mN _

m m
WN var(S; ) = WNE(RmJZV,R) + o(1)

=— + — - ic + o(1
N D CN(O) N o 121 (1 = pn)'Ca(i) + o(1).
By the assumption Npy/my —> 1 and (C2), it follows that var(Yy,;)
— o2, To complete step 2, by Katz’s (1963) Berry-Esseen bound,
it suffices to show that

my*?E| Yy, — E(Yy,)|** > 0 (A.5)

as my —> oo. But the left side of (A.5) is (by conditioning on R)
equal to
2+6

X
== (1 =py) " pow,

E|Si&|* =

Nl+6/2

which tends to 0 by (C3).

Step 3. The distribution of N'/2(Ey,,,, — Xy) tends to normal
with mean 0 and variance ¢ . This follows by step 2 and (C1).

Step 4. The distribution of NY(Enp — X, v) tends to normal
with mean 0 and variance o2 . To see why, if M is any random
variable (sequence) satisfying M/Npy — 1 in probability, then
N'2(Ey 5 — Xy) tends to normal with mean 0 and variance ¢2% .
This essentially follows by an extension of Theorem 7.3.2 (to a
triangular array setting) of Chung (1974). In our case, M = Npy
+ Op(N'"2py").

Step 5. Combine steps 1 and 4 to prove the claim.

Now to deduce (12), by a subsequence argument it suffices to
show that the convergence (C1), (C2), and (C3) hold in probability
for the original sequence X;, X, . . . . First, (C1) holds in probability
because N!/2Xy is order 1 in probability and Npy = oo. Second,
the convergence (C2) holds in probability by an argument very
similar to Theorem 1. Finally, to show that (C3) holds in probability,
write the term in question as
2+8

(A.6)

It suffices to show that (A.6) raised to the power (2 + 8)~! tends to
0 in probability, which by Minkowski’s inequality is bounded above
by

py |G .
(N5/2) [E| S;r — RXy|?2]V/@

py \1/C@H ‘
+ (N‘”z) XyE[|R - p¥' |2+a]1/(2+a). (A7)
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The second term in (A.7) is of order Xy N'/2[ Npy]~+9/@+®) which
tends to O in probability. It now suffices to show

ElS[R RX'le-H—)O

N&/Z

in probability, or that its expectation tends to O; that is,

N|+a/2 2 Z E[]Si,— rXn**°1(1 — p»)"'pn > 0. (A8)

To bound EISi,, — rXy|?"® note thatif l <i<i+r—1=<N,
then Yokoyama’s (1980) moment inequality applies, yielding
E|S;,|*" < Kr'*®/2 where the constant K depends only on the
mixing sequence {a(k)}. Thus, by Minkowski’s inequality and
then Yokoyama’s inequality, we have

EI Si,r _ rX'N|2+6 < [KI/(2+6)r[l+(6/2)][l/(2+5)]

+ (EI rXN|2+6)I/(2+6)]2+6

< [Kl/(2+.s)r[1+(5/2)1[|/(2+6)l
+[_IQV[1+(5/2)][1/(2+5)] 245

< (2 K)2+6r(l+6)/2.

Inthecasei+r— 1> Nbutr<N,write S;, = (X; + - -+ + Xy)
+ (X, + « + X,+,-1-~). Apply Minkowski’s inequality and Yo-
koyama’s inequality to get E| S,,| < 22"°Kr'*?/?_ Then, arguing
as earlier, we find E| S;, — rXy| 2 < (3K)?**r'**/2 In the general
case, suppose that r + N(j — 1) + 7, where 1| < # < N. Then S;,
= (j - I)NXN + S,',;. So

E|S,, - ’XNVH =E|S,;— fXN|2H,

and the general bound (3K)2*r!*¢/2 applies. Hence (A.8) is
bounded above by

< -1 v 1\ _
N6/2 E (BK)*r'*2(1 — py) py = O(N‘s/2 W) = o(1).

Proof of Theorem 3

The proof follows immediately by considering linear combina-
tions of the components and applying Theorem 2, which is appli-
cable by Remark 4. Then (13) follows by the continuous mapping
theorem (because a norm is almost everywhere continuous with
respect to a Gaussian measure).

Proof of Theorem 4

The proof follows as (14) and (15) are immediate from Theorgm
3, and the smoothness assumptions on fimply that N'/?[ f(8x)
— f(6)] has a limiting multivariate Gaussian distribution with mean
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0 and covariance matrix DZD’; see theorem A of Serfling (1980,
p. 122).

[Received April 1992. Revised April 1993.]
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