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Abstract

It is well known that time series of returns are characterized by volatility clus-

tering and excess kurtosis. Therefore, when modelling the dynamic behavior

of returns, inference and prediction methods, based on independent and/or

Gaussian observations may be inadequate. As bootstrap methods are not, in

general, based on any particular assumption on the distribution of the data,

they are well suited for the analysis of returns. This paper reviews the appli-

cation of bootstrap procedures for inference and prediction of …nancial time

series. In relation to inference, bootstrap techniques have been applied to ob-

tain the sample distribution of statistics for testing, for example, autoregressive

dynamics in the conditional mean and variance, unit roots in the mean, frac-

tional integration in volatility and the predictive ability of technical trading

rules. On the other hand, bootstrap procedures have been used to estimate

the distribution of returns which is of interest, for example, for Value at Risk
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(VaR) models or for prediction purposes. Although the application of boot-

strap techniques to the empirical analysis of …nancial time series is very broad,

there are few analytical results on the statistical properties of these techniques

when applied to heteroscedastic time series. Furthermore, there are quite a few

papers where the bootstrap procedures used are not adequate.

KEY WORDS: Forecasting, GARCH models, Non-Gaussian distributions,

Prediction, Returns, Stochastic Volatility, Technical Trading Rules, Value-at-

Risk (VaR), Variance ratio test.
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1. INTRODUCTION

High frequency time series of returns are often characterized by having excess kur-

tosis and autocorrelated squared observations. These stylized facts can be explained

by the presence of conditional heteroscedasticity, i.e. the volatility of returns evolves

over time. Given that the marginal distribution of returns is usually non-Gaussian,

the inference and prediction of models …tted to returns should not rely on methods

based on Gaussianity assumptions. However, bootstrap methods can be adequate in

this context; see Korajczyk (1985) for one of the earliest applications of bootstrap

methods to analyze …nancial problems. Many of the earlier papers using bootstrap

methods in …nance, use procedures based on resampling directly from observed re-

turns without taking into account that returns are sometimes correlated and often

not independent. Given that the basic bootstrap techniques were originally developed

for independent observations, the bootstrap inference has not the desired properties

when applied to raw returns; see, for example, Bookstaber and McDonald (1987),

Chatterjee and Pari (1990), Hsieh and Miller (1990) and Levich and Thomas (1993)

for some applications where returns are directly bootstrapped.

The application of bootstrap methods in …nance has been previously reviewed by

Maddala and Li (1996) who pointed out these shortcomings in some of the applica-

tions. To take into account the dynamic dependence of returns and, in particular, the

conditional heteroscedasticity, there are two possible bootstrap alternatives. First,

it is possible to assume a particular model for the volatility and to resample from

the returns standardized using the estimated conditional standard deviations. If the

volatility is correctly speci…ed, these standardized returns are asymptotically indepen-

dent and, consequently, the bootstrap procedure has the usual asymptotic properties.

Alternatively, the bootstrap procedure can be adapted to take into account that the

observations are dependent without assuming a particular model as, for example, in
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the block bootstrap method.

The objective of this paper is to review the use of bootstrap methods in the analysis

of …nancial time series. In general, these techniques can be used for two objectives.

First of all, it is possible to estimate the distribution of an estimator or test statistic.

Secondly, it is possible to estimate directly the probability distribution of returns. The

paper is organized as follows. In section 2, we brie‡y describe the main bootstrap

procedures for time series. Section 3 reviews the application of bootstrap procedures

for inference in …nancial models. The main application of bootstrap techniques in

this context is to analyze the predictive ability of technical trading rules. In section 4,

we describe several studies that apply bootstrap methods to obtain the distribution

function of returns that is fundamental in prediction and Value at Risk (VaR) models.

Finally, section 5 contains the conclusions.

2. BOOTSTRAP TECHNIQUES FOR TIME SERIES

The bootstrap, introduced by Efron (1979), appeared originally as a procedure to

measure the accuracy of an estimator. Its main attraction relies on the fact that

it can approximate the sampling distribution of the estimator of interest even when

this is very di¢cult or impossible to obtain analytically and only an asymptotic

approximation is available. Even more, the bootstrap has the advantage that is very

easy to apply independently of the complexity of the statistic of interest.

To illustrate the bootstrap methodology, let us consider one of the most common

situations found in statistics. Let x = (x1; x2; :::; xn) be a set of n independent

and identically distributed (iid) observations with distribution function F, and let

µ = s (F ) be the unknown parameter to be estimated. Given that the empirical

distribution function Fn is a good approximation of the true but unknown distribu-

tion F, a natural estimator for µ is bµ = s (Fn). However, knowledge of the sampling

distribution of the estimator or at least its mean and variance is only possible in
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very simple situations and, usually, the asymptotic distribution is used to approxi-

mate it. Furthermore, the standard errors are useful for summarizing the precision

of estimates when the distribution is symmetric. However, when the estimator has

a severely skewed …nite sample distribution, bootstrap interval estimates summarize

better the distribution. The bootstrap methodology allows an approximation of the

distribution of bµ under very general conditions and it is based on obtaining a boot-

strap replicate, x¤1; x¤2; :::; x¤n; of the available data set x1; x2; :::; xn, by drawing with

replacement random samples from Fn. Once B bootstrap replicates of the original

data set, with the corresponding B bootstrap realizations of the parameter of inter-

est bµ
¤
i i = 1; :::; B, have been obtained, the resampling distribution of the bootstrap

statistic µ¤ is used to approximate the distribution of bµ. Obviously, the bigger the

value of B, the better is the Monte Carlo approximation of µ¤, with the only price of

larger computational cost; see Efron and Tibshirany (1993) and Shao and Tu (1995).

With respect to the asymptotic validity of the bootstrap procedure, it is usual

to prove that some distance, usually the Mallows distance, between the bootstrap

distribution of µ¤ and the sampling distribution of bµ goes to zero as the sample size

increases to in…nity. Under some circumstances the bootstrap distribution enables us

to make more accurate inferences than the asymptotic approximation.

The bootstrap method just described is the simplest version and is only valid in the

case of iid observations. If the standard bootstrap is applied directly to dependent

observations, the resampled data will not preserve the properties of the original data

set, providing inconsistent statistical results. In particular, the standard bootstrap

procedure is neither consistent nor asymptotically unbiased under heteroscedasticity;

see Wu (1986) in the context of regression models. Recently, several parametric and

nonparametric bootstrap methods have been developed for time series data. The

parametric methods are based on assuming a speci…c model for the data. After esti-

mating the model by a consistent method, the residuals are bootstrapped; see Freed-
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man and Peters (1984) and Efron and Tibshirani (1986). If the serial dependence

of the data is misspeci…ed, the parametric bootstrap could be inconsistent. Conse-

quently, alternative approaches that do not require …tting a parametric model have

been developed to deal with dependent time series data. Kunsch (1989) proposed

the moving block bootstrap method that divide the data into overlapping blocks of

…xed length and resample with replacement from these blocks. The bootstrap repli-

cates generated by the moving block method are not stationary even if the original

series is stationary. For this reason, Politis and Romano (1994) suggest the stationary

bootstrap method that resamples from blocks of data with random lengths. In the

context of heteroscedastic time series, Wu (1986) proposed a weighted or wild boot-

strap method that provides a consistent estimate of the variance of a test statistic

in the presence of heteroscedasticity. The wild bootstrap is based on weighting each

original observation with random draws with replacement from a standard normal

distribution. Malliaropulos and Priestley (1999) propose a nonparametric implemen-

tation of this method that does not rely on the normal distribution. Hafner and

Herwartz (2000) also use another alternative version of this procedure.

Li and Maddala (1996) and Berkowitz and Kilian (2000) review the most relevant

developments in bootstrapping time series models, and show that the bootstrap algo-

rithms that make use of some parametric assumptions about the model appropriate

for the data, are preferable in many applications in time series econometrics.

With respect to testing a given null hypothesis, H0, it is fundamental to bootstrap

from the correct model. In the case of time series data, it is usually not recommended

to bootstrap from the raw data but from the residuals from a given model. However,

it is necessary to decide which are the residuals to be bootstrapped. Consider, for

example, the following AR(1) model:

yt = Á yt¡1 + ut
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and the null hypothesis H0: Á = Á0. In this case, we have mainly two alternative

series of residuals from the following models:

a) yt = bÁ yt¡1 + but

b) yt = Á0 yt¡1 + eut

Denote by bu¤t the residuals resampled from but and by eu¤t , the residuals resampled

from eut: Then, it is possible to obtain bootstrap replicates of the variable yt by one

of the following schemes:

i) y¤t = bÁ y¤t¡1 + bu¤t

ii) y¤t = Á0 y¤t¡1 + bu¤t

iii) y¤t = Á0 y
¤
t¡1 + eu¤t

Although, the third scheme is the most appropriate for hypothesis testing, the other

two alternatives have also been used in practice. For example, Hall and Wilson (1991)

provide guidelines for hypothesis testing using the …rst alternative while Ferreti and

Romo (1996) consider the second one to test for unit roots.

Bootstrap based methods can also be used to obtain prediction densities and inter-

vals for future values of a given variable without making distributional assumptions

on the innovations and, at the same time, allowing the introduction, into the esti-

mated prediction densities, of the variability due to parameter estimation. The most

in‡uential bootstrap procedure to construct prediction intervals for future values of

time series generated by linear AR(p) models, is due to Thombs and Schucany (1990).

This method needs the backward representation of the autorregressive model to gen-

erate bootstrap series that mimic the structure of the original data, keeping …xed the

last p observations in all bootstrap replicates. The use of the backward representa-

tion to generate bootstrap series makes the method computationally expensive and,
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what is more important, restricts its applicability exclusively to those models having

a backward representation, excluding, for example, the Generalized Autoregressive

Conditional Heteroscedasticity (GARCH) class of models. Furthermore, the predic-

tion in models with a moving average component is not possible with this methodology

since, at least theoretically, the whole sample should be kept …xed when generating

bootstrap replicates because of the in…nite order of the corresponding autorregres-

sive representation. Cao et al. (1997) present an alternative bootstrap method that

does no require the backward representation. However, the corresponding prediction

intervals do not incorporate the uncertainty due to parameter estimation as they are

conditional on parameter estimates.

To overcome these drawbacks, Pascual et al. (1998) propose a new bootstrap

strategy to obtain prediction densities for general ARIMA models. With this new

methodology it is possible to incorporate the variability due to parameter estima-

tion into the prediction densities without requiring the backward representation of

the process. Therefore, the procedure is very ‡exible and easy to use, and what is

more important, can be extended and adapted easily to processes without a back-

ward representation and, in particular, to GARCH processes. Finally, Gospodinov

(2002) analyses the prediction accuracy of another bootstrap procedure to compute

the median unbiased forecast of near-integrated autoregressive processes. He illus-

trates the properties of this procedure analyzing one-month U.S. T-bill yields which

are highly persistent although the presence of an exact unit root is inconsistent with

the bond pricing theory. This procedure is also based on the use of the backward

representation and could be modi…ed along the lines of the procedure suggested by

Pascual et al. (1998).

In a recent essay on bootstrap techniques, Horowitz (2001) points out that boot-

strap methods for time series data are less well developed than methods for iid obser-

vations and that important research remains to be done. This fact is even more clear
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when looking at applications of bootstrap procedures to data generated by non-linear

models and, in particular, by GARCH and Stochastic Volatility (SV) models.

3. INFERENCE

In this section, we describe several applications of bootstrap procedures to analyze

the dynamic properties of …nancial returns that appear after the review of Maddala

and Li (1996). First, we consider tests related with the dynamic behavior of the

conditional mean of returns. Then we review the papers where bootstrap procedures

have been applied to test for dynamics in the conditional variance. One of the areas

where bootstrap techniques have been widely applied is to test for the superiority of

technical trading rules and we dedicate one separate subsection to inference on trading

rules. Finally, we present other applications of bootstrap procedures to …nancial time

series.

3.1 Testing for dynamics in the conditional mean of returns

In this subsection, we review the papers using bootstrap procedures to test for

the dynamic components in the conditional mean of returns. Numerous studies have

found that daily stock market returns exhibit positive low-serial correlation that is

often attributed to non-synchronous trading e¤ects. Consequently, there is great in-

terest in testing for the presence of such autoregressive dynamics in returns. For

example, Malliaropulos (1996) apply the variance ratio test, proposed by Cochrane

(1988), to monthly observations of the FT-A All Share index and Pan et al. (1997) to

currency futures prices. The latter authors use both the asymptotic standard errors

and bootstrap p-values for the test and conclude that the results are similar. However,

it is important to notice that both Malliaropulos (1996) and Pan et al. (1997) boot-

strap directly from the raw returns that, as mentioned in the introduction, are not
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independent, although they are uncorrelated under the null hypothesis. Therefore,

the bootstrap p-values may be inappropriate. To solve this problem, Malliaropu-

los and Priestley (1999) obtain the …nite sample distribution of the variance ratio

test using the weighted bootstrap method. They apply the variance ratio test to

unexpected excess returns of several South Asian stock markets after accounting for

time-varying risk and potential partial integration of the local stock market into the

world stock market. It is concluded that, although excess returns exhibit mean re-

version in a number of markets, the failure to reject the random walk hypothesis

is related to mean-reversion of expected returns rather than to market ine¢ciency.

Alternatively, Politis, et al. (1997) propose a subsampling method to test the null

hypothesis of uncorrelated returns by means of the variance ratio test. This method

has the advantage that it works for dependent and heteroscedastic returns.

To illustrate the e¤ect of the presence of conditional heteroscedasticity on the

bootstrap densities of the variance ratio test, 1000 series have been simulated by the

following GARCH(1,1) model

yt = "t¾t; t = 1; :::; T (1)

¾2t = 0:05 + 0:1y2t¡1 + 0:85¾2t¡1

where yt represents the series of returns, i.e., yt = log(pt=pt¡1); pt is the stock price

at time t, ¾t is the volatility and "t is a white noise that has been generated by both

a Gaussian distribution and a standardized Student-t distribution with 5 degrees of

freedom. Notice that the Student-t distribution has been proposed by many authors

as the conditional distribution of returns; see, for example, Baillie and Bollerslev

(1989). Table 1 reports the Monte Carlo results on the average p-values of the variance

ratio statistic given by
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V R(q) =

TP
t=q+1

(pt ¡ pt¡q))2

TP
t=2

(pt ¡ pt¡1)2
(2)

for T=300 and T=1000 and q=2, 5, 10 and 20 when series are generated by model

(1) with "t being Gaussian. To make the comparisons simpler, the statistic has been

standardized using its asymptotic standard deviation, as given by Lo and McKinlay

(1989) so that all the statistics are asymptotically N(0,1). In this table, it is possible

to observe that when the bootstrap is based on resampling from the raw returns,

the asymptotic and bootstrap p-values are similar, a result that was also reported by

Pan et al. (1997). Furthermore, both the asymptotic and bootstrap p-values exceed

the corresponding empirical p-values. However, when the bootstrap is based on the

standardized returns, the sampling and the bootstrap distributions of the VR(q)

statistic are closer.

Figures 1 and 2 represent the empirical density of the VR(q) statistic for series

generated by model (1) with "t having a Student-t distribution for T = 300 and 1000;

respectively. These …gures also represent the bootstrap densities obtained by resam-

pling from the raw returns (bootstrap 1) and from the returns standardized using the

estimated GARCH conditional standard deviations (bootstrap 2) for two particular

series generated by the same model. It is clear that, in the latter case, the esti-

mated sampling density is closer to the empirical density. Furthermore, notice that

the performance of bootstrapping without taking into account the conditional het-

eroscedasticity deteriorates as the sample size increases. Consequently, the p-values

based on bootstraping directly from the raw returns may have important distortions.

For example, for a series generated with T = 1000, the statistic VR(2) is 0.838. In

this case, the asymptotic p-value and the bootstrap p-value obtained by resampling

from the raw returns are nearly the same, 0.201 and 0.209, respectively. However,

bootstrap p-values obtained from the heteroscedastic model is 0.249 that is closer to

11



the empirical p-value of 0.271. Notice that, once more, it is possible to observe that

the asymptotic and the bootstrap p-values based on raw returns are similar.

We now consider the empirical application of the VR statistic to test for the

presence of autoregressive components in the exchange rate of the British Pound

against the Dollar observed daily from the 1 January 1990 to 31 December 2001,

with T = 3040. The series of returns, yt = 100 log( pt=pt¡1), where pt is the ex-

change rate at time t, has been plotted in Figure 3. Table 2 reports the values of the

VR(q) statistic for q = 2; 5; 10 and 20, together with the corresponding asymptotic

p-values and the bootstrap p-values obtained from the raw returns. Notice that both

p-values are very similar for all values of q considered. However, the returns are not

independent. Fitting a GARCH(1,1) model, the following estimates are obtained:

b¾2t =0:0007
(0:0001)

+ 0:0444
(0:0047)

y2t¡1+ 0:9443
(0:0058)

b¾2t¡1 (3)

The p-values obtained by resampling from the corresponding standardized returns

are also reported in Table 3. Observe that, these p-values are always greater than

the corresponding asymptotic p-values. Furthermore, the results of the test can

be reversed depending on which p-value is used. For example, when q = 10; the

null of no autocorrelation is rejected using both the asymptotic and the bootstrap

p-values based on raw returns. However, the null hypothesis is not rejected when

bootstrapping from the standardized returns.

Summarizing, we have shown with both simulated and real data that bootstrapping

raw returns in order to obtain p-values of the VR statistic when there is conditional

heteroscedasticity, could seriously distort the results of the test. Furthermore, it could

be expected that the corresponding bootstrap p-values are not very di¤erent from the

asymptotic p-values. Using bootstrap procedures appropriate for the characteristics

of returns, yields p-values remarkably close to the empirical p-values.

The variance ratio test is not the only statistic used in …nance to test for autore-
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gressive components in the conditional mean of returns. In a very interesting paper,

Hafner and Herwartz (2000) consider two Wald tests based on Quasi-Maximum Likeli-

hood (QML) estimation assuming a GARCH(1,1) model for the conditional variance.

As QML inference depends on the speci…cation of the variance process, they also con-

sider tests based on Ordinary Least Squares (OLS) estimation and a bootstrapped

version of the OLS based statistics using the wild bootstrap. The asymptotic con-

vergence of the distribution of the bootstrapped statistics to the asymptotic distrib-

ution of the original statistic is proven. By means of Monte Carlo experiments, they

show that the wild bootstrap inference shows superior size properties relative to all

the other tests considered. However, the power of the bootstrap tests is low in the

cases were the volatility is highly persistent. Finally, they apply the alternative tests

considered to German stock returns, giving in many cases di¤erent decisions about

acceptance or rejection of the null hypothesis of no autocorrelation.

White and Racine (2001) also test for predictable components in returns by ap-

plying bootstrap techniques for inference in arti…cial neural networks (ANN). They

conclude that exchange rates do appear to contain information that is exploitable for

enhanced point prediction, but the nature of the predictive relation evolves over time.

However, they do not take into account the evolution of the conditional variance.

In relation to testing for the presence of unit roots in exchange rates, Kanas (1998)

investigates whether the Dickey-Fuller (DF) test is a¤ected by the presence of struc-

tural breaks due to realignments in the central parities. Bootstrap simulations are

used to generate critical values of the DF test in the presence of multiple dummy

variables. He concludes that, once you take into account the realignments, there is

no evidence of the presence of unit roots in exchange rates.

Although most of the previous authors conclude that stock returns are not pre-

dictable in the short run, there is an interest for long horizon regressions that usually

take the following expression:
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kX

i=1
yt+i = ®k + ¯k xk + utk (4)

where xt is some variable measuring fundamental values, usually dividend yield. Mad-

dala and Li (1996) review extensively several papers using bootstrap techniques in

this context. Ikenberry et al. (1995) also analyze the long-run behavior of returns

by means of an event study analysis. They conclude that long-run abnormal returns

are systematically nonzero. They de…ned the sample buy-and-hold abnormal return

as the di¤erence between the buy-and-hold return and the corresponding return on a

portfolio of securities matched by book-to-market, size and event date. To assess the

statistical signi…cance, this di¤erence is compared to a bootstrap distribution of buy-

and-hold abnormal returns. However, Kothari and Warner (1997) point out several

potential shortcoming of bootstrap techniques for long-horizon event studies.

In relation to testing for non-linearities in the conditional mean of a series in the

presence of high persistence and conditional heteroscedasticity, Gospodinov (2000)

proposes to use a Threshold Autoregressive of order one (TAR(1)) model with GARCH(1,1)

errors which is applied to the analysis of the term structure of interest rates. He uses

bootstrap approximations to ensure the validity of the statistical inference. In par-

ticular, he proposes three alternative bootstrap procedures. The …rst one is based

on bootstraping the standardized residuals, the second is a wild bootstrap procedure

and, …nally, he considers a feasible GLS bootstrap. The size and power properties

of these approximations are evaluated by simulation and the conclusion is that all of

the bootstrap tests have excellent size properties.

Garrant et al. (2001) also test for the presence of target-zone nonlinearities in

the Pound/Deustchmark exchange rate using the block bootstrap to compute the

corresponding p-values.
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3.2 Testing for dynamics in the conditional variance of returns

There are also hypothesis related to the dynamics of volatility that have been

tested using bootstrap procedures. Lamoureux and Lastrapes (1990) were the …rst to

use bootstrap procedures to test if the Integrated GARCH (IGARCH) models, often

found in empirical applications, can be the result of structural changes in otherwise

stationary GARCH models. However, Maddala and Li (1996) point out that they do

not formulate correctly the null hypothesis to be tested and show how the test should

be carried out properly.

Tauchen et al. (1996) investigate multi-step nonlinear dynamics of daily price

and volume movements. Their objective is to examine the persistence properties of

stochastic volatility, the asymmetric responses of conditional variances to positive and

negative movements in prices and the nonlinear relation between volume and prices.

They construct con…dence bands for the corresponding impulse response functions by

resampling from the …tted conditional densities. The bootstrap method they used is

described in Gallant et al. (1993).

Later, Brockman and Chowdhury (1997) applied bootstrap techniques to distin-

guish whether the intra-day implied volatility of the S&P100 index call option is

stochastic or has a chaotic deterministic behavior. However, they are bootstrapping

from the raw returns series that are not independent. Therefore, the properties of

the bootstrap procedure can be seriously a¤ected.

Bollerslev and Mikkelsen (1999) analyze whether the long-run dependence in U.S.

stock market volatility is best described by a slowly mean-reverting fractionally in-

tegrated process by inferring the degree of mean-reversion implicit in a panel data

set of transaction prices on the S&P500 composite stock price index. They com-

pare the observed prices with risk-neutralized prices bootstrapped from the residuals

standardized with standard deviations estimated by di¤erent heteroscedastic models.
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They conclude that the Fractionally Integrated EGARCH (FIEGARCH) model of

Bollerslev and Mikkelsen (1996) results in the lowest average absolute and relative

pricing errors.

Also, in relation to testing the dynamics of volatility, Blake and Kapetanios (2000)

propose a test for ARCH based on a neural network speci…cation. As the test su¤ers

from size distortions, they use bootstrap procedures to correct them.

Finally, Eftekhari et al. (2000) compare di¤erent measures of risk, namely the

semi-variance, the lower partial moment, the Gini and the absolute deviation using

both simulated and real series of monthly returns. They draw, with replacement,

returns from each of the samples of real data and the alternative measures of risk are

calculated for each of the bootstrapped samples.

3.3 Technical trading rules

One of the most popular methods to analyze the hypothesis that equity markets are

e¢cient is based on technical analysis. Trading rules are used to classify each day t as

either Buy, Sell or Neutral, using information available up to day t. Technical trading

rules are rather important in practice given that they are almost universally used by

practitioners; see the references in Chang and Osler (1999). A trading rule is said to

uncover evidence of price predictability if expected returns depend on the Buy/Sell

information. To assess this dependency, it is natural to test for the di¤erence between

the average returns for Buy and Sell days. The obvious test of the null hypothesis

that there is no predictability is based on the following statistic

z =
rI ¡ rJµ
s2I
nI

+ s2J
nJ

¶0:5

where rI, s2I and nI are, respectively, the sample mean, variance and number of

returns for Buy days, and rJ, s2J and nJ are the corresponding measures for Sell days.
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The asymptotic distribution of the z statistic is standard normal when the returns

process is a strictly stationary, martingale di¤erence with …nite second moments.

When several trading rules are considered, another interesting hypothesis is whether

there exists a superior technical trading rule that signi…cantly outperforms a bench-

mark of holding cash. The null hypothesis, in this case, is that the expected return

of the best trading rule is no better than the expected return of the benchmark.

Due to the non-normality of returns, it is sensible to use bootstrap procedures to

estimate the distribution of these statistics. In a seminal paper in this area, Brock

et al. (1992) propose to combine technical analysis and bootstrap procedures. They

proposed a bootstrap procedure to obtain a better approximation of these statistics

and to decide if some speci…c statistical model can explain the observed trading rules

results. A statistic z is calculated from a trading rule applied to the observed series.

Then a particular statistical model is …tted to the observed returns and arti…cial

price series are generated by sampling from the corresponding residuals together

with the estimated parameters. The same statistic z is computed for each of the

arti…cial price series, obtaining a sequence of bootstrap statistics, z¤1; z¤2 ; :::; z¤B. The

proportion of statistics z¤i that are more extreme than z, is the p-value for the test of

the null hypothesis that the particular model generates observed prices. They apply

this bootstrap method to analyze the properties of the Dow Jones Index observed

daily from 1897 to 1986, bootstraping the p-values for the di¤erence between Buy

and Sell average returns by applying 26 technical trading rules, and conclude that

they signi…cantly outperform the benchmark. However, they explicitly mention that

the asymptotic properties of the bootstrap procedure proposed are not known for

some models of the GARCH family as, for example, EGARCH and GARCH-M.

Furthermore, they suggest that the results of the test are not qualitatively altered

whether the asymptotic or the bootstrapped standard errors are used. Finally, they

note the dangers of data-snooping when testing the pro…tability of a large number of
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trading rules on the same sample of returns. Data-snooping occurs when a given data

set is used more than once for inference or data selection. In this case, there is the

possibility that positive results can be due simply to chance. As they are testing 26

trading rules one by one, there is a reasonable possibility that data-snooping could be

occurring. Therefore, the evidence in favor of a superior performance of trading rules

can be tempered. Finally, it should be mentioned that the combination of bootstrap

methods with trading rules has been more fruitful as an instrument to check the

adequacy of several commonly used models like Random Walks, GARCH and the

Markov switching regression models. For this purpose, Brock et al. (1992) propose

to bootstrap the residuals from a …tted model and the estimated parameters to obtain

bootstrap replicates of the original data. They compute the trading rule pro…ts for

each bootstrap replicate and compare the corresponding bootstrap distribution with

the trading rule pro…ts derived from the actual data.

The application of the procedures proposed by Brock et al. (1992) is very extensive

in the literature. For example, Mills (1997) applies their methodology to data on

the London Stock Exchange FT30 index for the period 1935-1994. Although he

found that trading rules outperform the benchmark when using data up to 1980,

the predictive ability of the trading rules after this date disappears. Later, LeBaron

(1999) tests whether the predictive ability of trading rules over future movements of

foreign exchange rates changes after removing periods in which the Federal Reserve

is active. Maillet and Michel (2000) apply the test proposed by LeBaron (1999) to

twelve exchange rates. They also use bootstrap methods to estimate the distribution

of both trading rule returns and raw returns to analyze whether …ltering the raw

exchange series with some trading rule signi…cantly changes their characteristics.

Finally, Taylor (2000) studies the predictability of several U.K. …nancial prices by

…tting ARMA-ARCH models to the corresponding returns.

As noted by Brock et al. (1992), there is a danger of data-snooping when test-
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ing one by one the performance of a high number of trading rules. To avoid it,

White (2000) applies the stationary bootstrap to test whether the performance of

the best trading rule is no better than the benchmark. Later, Sullivan et al. (1999)

apply White’s (2000) bootstrap methodology to present a comprehensive test of per-

formance across several technical rules. They show that, even after adjustments for

data-snooping, some of the trading rules considered by Brock et al. (1992) outperform

the benchmark. However, their results do not hold out-of-sample.

However, even after Maddala and Li (1996) highlighted the dangers of bootstrap-

ping from raw returns, there are some authors who still do not take into account the

presence of conditional heteroscedasticity when using bootstrap procedures to ana-

lyze the pro…tability of technical trading rules; see, for example, Bessembinder and

Chan (1998) and Chang and Osler (1999).

Kho (1996) analyses the performance of trading rules on currency futures markets

using an alternative procedure to the one proposed by Brock et al. (1992). He applies

a bootstrap procedure based on observations standardized assuming a GARCH-M

speci…cation, to some versions of the conditional international Capital Asset Pricing

Model (CAPM) for time-varying expected returns and risk. Subsequently, Ito (1999)

evaluates the pro…tability of technical trading rules by using equilibrium asset pricing

models. He found that using standard or bootstrap p-values, the conclusions can be

reversed.

Finally, the Contrarian Hypothesis, also related to trading rules, states that stocks

that consistently underperform (outperform) the market will outperform (underper-

form) over subsequent periods, those stocks that have previously outperformed (un-

derperformed) the market. In two closely related papers, Mum et al. (1999, 2000),

use exactly the same methodology to test this hypothesis for French and German

stock markets in the …rst paper, and for US and Canadian stock markets in the sec-

ond. The bootstrap procedure they use, however, is not appropriate, in the main
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because they are not resampling under the null hypothesis, but also because it is

hard to believe that it is really a bootstrap procedure.

3.4 Other tests

There are other applications of bootstrap procedures to hypothesis testing related

to …nancial data. For example, Stanton (1997) estimates non-parametrically the

parameters of continuous time di¤usion processes that are observed at discrete times

using kernel estimators of the corresponding conditional expectations. He uses the

block bootstrap to calculate con…dence bands for the estimated densities.

Later, Carriere (2000) constructs con…dence intervals for forward rates estimated

with spline models that take into account the heteroscedasticity and correlation in

the data. They resample from the residuals standardized to have constant variance

and no autocorrelation.

Finally, in two very closely related papers, Groenewold and Fraser (2001a,b) an-

alyze the sensitivity of tests of asset-pricing models to violations of the Gaussianity

hypothesis. In the former paper, they use Australian data and in the latter, US and

UK data, to compare the standard test with those based on GMM estimators and

on bootstrap procedures. They conclude that standard methods are robust to Gaus-

sianity. However, their results have two limitations. First, although they mention

three alternative bootstrap procedures, the standard procedure based on resampling

directly from the returns, a block bootstrap and a parametric bootstrap based on

…tting a model for the conditional variance, the …rst is inappropriate and they do

not implement the third. Therefore, only the block bootstrap may have the desired

properties. The second limitation is concerned with the properties of the data they

analyze, namely the observations are monthly and the presence of conditional het-

eroscedasticity is very weak. Therefore, it is not surprising that the results based on

the bootstrap or on standard asymptotic distributions are similar.

20



Table 3 summarizes the main contributions described in this section.

4. DISTRIBUTION OF RETURNS AND VOLATILITIES

Bootstrap procedures can be used not only to estimate the sample distribution

of a given statistic but also to obtain estimates of the density of the variable being

analyzed. In this section, we review the papers that apply bootstrap procedures to

obtain prediction densities of future returns and their volatilities and to estimate the

VaR.

4.1 Prediction

Prediction is one of the main goals when a dynamic model is …tted to returns.

In that sense, GARCH and SV models have the attraction that they can provide

dynamic prediction intervals that are narrow in tranquil times and wide in volatile

periods. Furthermore, there is an increasing interest in interval forecasts as measures

of uncertainty; see, for example, Bollerslev (2001) and Engle (2001). On the other

hand, the volatility of returns is a key factor in many models of option valuation

and portfolio allocation problems. Therefore, accurate predictions of volatilities are

critical for the implementation and evaluation of asset and derivative pricing theories,

as well as trading and hedging strategies. Bootstrap-based methods lead to predic-

tion intervals that incorporate the uncertainty due to parameter estimation without

distributional assumptions on the sequence of innovations. As described in section

2, these methods have proved to be very useful for obtaining prediction intervals for

future values of series generated by linear ARIMA models. However, if the presence

of conditional heteroscedasticity is not taken into account, the coverage properties

of bootstrap intervals for high frequency returns can be distorted; see, for exam-

ple, Kim (2001) in the context of VAR(1) models. Consequently, Miguel and Olave
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(1999a) extend the procedure of Cao et al. (1997) to stationary ARMA processes

with GARCH(1,1) innovations and prove the asymptotic validity of the corresponding

bootstrap procedure to obtain prediction intervals for future returns. These predic-

tion intervals are conditional on the parameter estimates and, consequently, do not

incorporate the uncertainty due to parameter estimation. As volatility is speci…ed as

a function of past observations in GARCH models, future volatilities are known given

the parameters and past observations. As a consequence, the bootstrap procedure

proposed by Miguel and Olave (1999a) cannot be used to obtain prediction intervals

for future volatilities. Miguel and Olave (1999b) carry out a Monte Carlo exper-

iment to compare the performance of the conditional bootstrap intervals with the

Cornish-Fisher approximation proposed by Baillie and Bollerslev (1992). They show

that when the prediction horizon is longer than one period, the bootstrap prediction

intervals have coverages closer to the nominal than the intervals based on Cornish-

Fisher approximations. Gospodinov (2002) also proposes an alternative bootstrap

procedure conditional on parameter estimates to forecast future returns modeled by

a TAR(1) model with GARCH(1,1) errors.

Pascual et al. (2000) generalize the bootstrap procedure of Pascual et al. (1998)

to obtain prediction densities of both returns and volatilities of series generated by

GARCH processes. The main advantage of their proposal is that the procedure

incorporates the variability due to parameter estimation and, therefore, it is possible

to obtain bootstrap prediction densities for the volatility process. The asymptotic

properties of the procedure are derived and the …nite sample properties are analyzed

by means of Monte Carlo experiments which show that the properties of intervals for

future returns are adequate. They also show that incorporating the uncertainty due

to parameter estimation makes no di¤erence when generating prediction intervals for

returns if the error distribution is symmetric. However, when constructing prediction

intervals for future volatilities, it is necessary to introduce this uncertainty to have
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coverage close to the nominal values. However, the length of intervals for future

volatilities is well above the empirical values. Finally, they apply their bootstrap

procedure to obtain prediction densities of future values and volatilities of the IBEX35

index of the Madrid Stock Exchange.

To illustrate the use of the bootstrap to obtain prediction densities for future

returns and volatilities, the procedure proposed by Pascual et al. (2000) has been

applied to the series of returns of the Pound-Dollar exchange rate described in section

3. Although the series consists of T = 3039 observations, only 3019 have been used

for estimation purposes, leaving the last 20 observations for out-of-sample forecast

evaluation. Recall that the VR(q) test detects autoregressive components in the

returns series for q=2 and 5. Therefore, we …t an AR(1) model with GARCH(1,1)

errors. The estimated model is given by

yt = 0:0652
(0:0181)

yt¡1 + at (5)

at = "t¾t

b¾2t = 0:0007
(0:0001)

+ 0:0443
(0:0047)

a2t¡1+ 0:9447
(0:0058)

b¾2t¡1

Figure 4 represents a kernel estimate of the density of the standardized residuals,

b"t = at=b¾t, together with the standard normal density. Notice that the density of b"t

has fat tails. In particular, the kurtosis is 4.6711. Therefore, the conditional Gaus-

sianity of returns is rejected when a GARCH(1,1) model is …tted. Figure 5 represents

the bootstrap densities estimated for 1, 5, 10 and 20 steps-ahead predictions of re-

turns. Using these bootstrap densities, it is possible to construct the corresponding

prediction intervals for future returns. Figure 6 represents the 80% and 95% intervals

for yT+k, k = 1; :::; 20; together with the intervals obtained using the Box-Jenkins

methodology. We also plot the point predictions that, in this case, are equal to zero

and the actual values of yT+k. Notice that approximately 4 of 20 observations are
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supposed to lie out the 80% prediction interval. However, the Box-Jenkins intervals

are unnecessarily wide leaving only one outside. While the bootstrap intervals are

thinner, they leave 4 observations outside. On the other hand, looking at the 95%

intervals, they are supposed to leave one observation out.

With respect to the prediction of future volatilities, Figure 7 represents the boot-

strap densities for di¤erent prediction horizons. The corresponding bootstrap predic-

tion intervals for future volatilities have been plotted in Figure 8, together with the

point predictions obtained from the estimated GARCH(1,1) model in equation (5).

The extension of these bootstrap procedures to estimate prediction densities of

returns and volatilities of series generated by SV models seems rather promising

in the context of predicting future volatilities. Remember that while in GARCH

models the volatility is known one-step-ahead, SV models introduce an unexpected

component that could allow more realistic prediction intervals with better coverage.

4.2 Value-at-Risk (VaR)

Financial risk management is dedicated to providing density forecasts of portfolio

values and to tracking certain aspects of the densities such as, for example, Value-at-

Risk (VaR). The VaR can be de…ned as the expected loss of a portfolio after a given

period of time (usually 10 days) corresponding to the ®% quantile (usually 1%).

The early VaR parametric models impose a known theoretical distribution to price

changes. Usually it is assumed that the density function of risk factors in‡uencing

asset returns is a multivariate normal distribution. The most popular parametric

methods are variance-covariance models and Monte Carlo simulation. However, ex-

cess kurtosis of these factors will cause losses greater than VaR to occur more fre-

quently and be more extreme than those predicted by the Gaussian distribution.

Consequently, many authors suggest using bootstrap techniques to avoid particular

assumptions on the distribution of factors beyond stationarity of the distribution of

24



returns. The procedure consists of generating scenarios by sampling observed returns

associated with each risk factor included in the portfolio. The aggregate value of all

linear and derivative positions produces a simulated portfolio value. Vlaar (2000)

investigates the accuracy of various VaR models on Dutch interest rate-based portfo-

lios and concludes that bootstrap techniques produce satisfactory results when long

periods of data are available.

Early bootstrap procedures to compute the VaR of a portfolio assumed constant

volatility of returns. However, the ability of bootstrap techniques to predict future

losses can be undermined when the volatility evolves over time and, therefore the

distribution of risk factors is not i.i.d.. In this case, the probability of having a large

loss is not equal across di¤erent days. Barone-Adesi et al. (1999) propose a bootstrap

procedure to obtain VaR estimates based on resampling from returns standardized

using GARCH estimates of the volatility. The bootstrapping is done conditional on

the parameter estimates and, therefore, is similar to the one proposed by Miguel and

Olave (1999a) for obtaining prediction intervals. They illustrate the procedure with a

very informative numerical example of a portfolio of three assets. Later, Barone-Adesi

et al. (2001) compare this method with traditional bootstrapping estimates using

three hypothetical portfolios on the S&P500 index and show that the advantages of

the standardized bootstrap is magni…ed by the presence of options in the portfolio.

To illustrate of the di¤erent alternatives to estimate the VaR, we perform the

following experiment. We simulate 1000 series by the GARCH(1,1) model in (1) and

compute the empirical VaR for ® = 0:01; 0:05 and 0:1. Then for each simulated

series, we estimate the VaR by each of the following procedures:

i) Assuming that returns are N(0,bs2), where bs2 is the sample variance.

ii) Assuming that returns are a conditionally Gaussian GARCH(1,1) process.

iii) Resampling from the raw returns and estimating their density under conditional

homoscedasticity.
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iv) Resampling from the returns standardized with the GARCH estimates of the

conditional standard deviation and estimating the density conditional on parameter

estimates, as proposed by Barone-Adessi et al. (1999).

v) Resampling from the returns standardized with the GARCH estimates of the

conditional standard deviation and estimating the density incorporating parameter

uncertainty. Notice that, in this case, the procedure used to obtain the density is the

one proposed by Pascual et al. (2000).

Tables 4 and 5 report the average VaR values across all the replicates when "t in

(1) is a Student-t distribution with 5 degrees of freedom and a minus Â2 distribution

with 4 degrees of freedom, respectively. In these tables we do not report the average

VaR values for the bootstrap procedure based on resampling the standardized returns

conditional on parameter estimates because they are very similar to those obtained

by incorporating the parameter uncertainty. Pascual et al. (2000) show that whether

or not the parameter uncertainty is incorporated in intervals for returns does not

have any signi…cant e¤ect. With respect to the Student-t distribution, Table 4 shows

that, assuming marginal Gaussianity of returns, the VaR values obtained are well

under the empirical values at the 0.05 and 0.1 probabilities, implying more expected

losses than actual. However, at the most common 0.01 probability, the estimated

VaR is larger than the empirical value. Therefore, the estimated loss is smaller than

the actual. The same conclusions are reached for all horizons and the problem is

not solved by increasing the sample size. Although the expected losses are slightly

closer to the empirical values, the same results are observed when a conditionally

Gaussian GARCH(1,1) model is assumed. The estimated VaR values are clearly

improved when they are computed using bootstrap procedures. The expected losses

when bootstrapping from the raw returns are generally bigger than the actual losses.

However, when the bootstrap is done by resampling from the standardized returns,

i.e., the presence of conditional heteroscedasticty is taken into account, the estimated
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VaR’s are remarkably close to the actual values. The bootstrap procedure performs

well in estimating the VaR.

With respect to the results for the asymmetric minus Â2 distribution, Table 5

shows that the VaR values computed assuming a marginal Gaussian distribution

of returns are systematically bigger than the actual values. Even larger or similar

estimates are obtained when a conditionally Gaussian GARCH(1,1) model is assumed.

Therefore, the actual losses will be, on average, bigger than the losses predicted by

both models. This problem is observed for all probabilities, forecast horizons and

sample sizes considered. On the other hand, when the bootstrap procedures are

applied, the estimated VaR’s are closer to the empirical values. Once more, the

estimated bootstrap VaR values are more accurate, specially for the shorter horizons,

when resampling from the standardized returns.

Finally, we have obtained the VaR of the Pound-Dollar exchange rate using the

normality assumption and by the procedure proposed by Pascual et al. (2000). For

® = 0:05 and three steps ahead, the expected loss assuming normality is -0.3865 while

the bootstrap VaR is bigger at -0.3724. On the other hand, when ® = 0:01, under

normality the VaR is -0.5435 and the bootstrap is smaller at -0.6108. Notice that the

more important di¤erences between both values of the VaR appear when looking at

the tails of the distribution that are the focus of interest from the empirical point of

view.

Table 6 summarizes the main contributions in this area.

5. CONCLUSIONS

In this paper, we reviewed the literature on the application of bootstrap procedures

to the analysis of …nancial time series. We focused mainly on the papers that have

appeared after the review of Maddala and Li (1996). High frequency …nancial returns

are often characterized by a leptokurtic marginal distribution of unknown form. Con-

27



sequently, bootstrap methods are especially well suited for their analysis. However,

when applying these methods to the empirical analysis of …nancial returns, it should

be kept in mind that they were originally designed for i.i.d. observations. Although

…nancial returns are usually uncorrelated, they are not independent. Volatility clus-

tering generates correlations between squared observations. Therefore, the bootstrap

procedures should be adapted to take into account this dependence. There are two

main alternatives. The …rst is to assume a parametric model for the dynamic evolution

of the volatility and to bootstrap from the returns standardized with the estimated

standard deviations. Alternatively, it is possible to adopt nonparametric bootstrap

methods designed for dependent observations as, for example, the block bootstrap.

There are many empirical applications where bootstrap methods have been adopted

to test a great variety of null hypothesis related with …nancial returns as, for exam-

ple, the presence of predictable components in the conditional mean, the long-memory

property of the conditional variance, or the predictive ability of trading rules. Boot-

strap procedures have also been used to obtain the predictive densities of future re-

turns and volatilities, which are fundamental, for example, for VaR models. However,

there are very few analytical results on the …nite sample and asymptotic properties

of the bootstrap procedures when applied to heteroscedastic time series.

Although we focused on the application of bootstrap techniques to the analysis of

univariate …nancial time series, there are also multivariate applications. For example,

Engsted and Tanggaard (2001) use bootstrap procedures to compute the bias, stan-

dard errors and con…dence intervals for the parameters of VAR models …tted to model

the Danish stock and bond markets. Kim (2001) also uses bootstrap procedures in

the context of VAR models applied to …nancial series.
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Table 1. Monte Carlo results on p-values of VR(q) statistic.

GARCH (1,1) returns with Gaussian errors

Average p-values

q T Empirical Asymptotic Bootstrap1 Bootstrap2

2 300 0.4858 0.5183 0.5105 0.4965

1000 0.4994 0.5250 0.5120 0.5035

5 300 0.4769 0.5246 0.5195 0.4872

1000 0.4976 0.5158 0.5105 0.4935

10 300 0.4858 0.5568 0.5417 0.4958

1000 0.5026 0.5299 0.5240 0.4966

20 300 0.4881 0.5941 0.5650 0.5026

1000 0.5043 0.5468 0.5372 0.4987

Table 2. VR(q) statistic and p-values for

British Pound-Dollar exchange rate

p-values

q Statistic Asymptotic Bootstrap1 Bootstrap2

2 3-0438 0.0012 0.0020 0.0070

5 2.5821 0.0049 0.009 0.0360

10 1.9790 0.0239 0.0270 0.0510

20 1.3291 0.0919 0.0960 0.1310
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Table 3. Summary of recent bootstrap applications testing for dynamics of returns

Author Test for Boot. procedure Results

Conditional mean

Malliaropulos (1996) Autocor. of returns Raw returns Not take into account heteros.

Pan et al. (1997) Autocor. of returns Raw returns Not take into account heteros.

Kanas (1998) Unit root in prices

Mallia. and Priest. (1999) Autocor. of returns Weigthed boot. Mean reversion is due to time-

varying expected returns and

partial integration

Politis et al. (1999) Autocor. of returns Subsampling Asymptotic properties

Gospodinov (2000) Non-linearities Standard. returns Finite sample propoerties

Wild Bootstrap Speci…es a TAR model

Feasible GLS Boot with GARCH errors

Hafner and Herwa. (2000) Autocor. of returns Wild bootstrap Boots. test have good size

and power properties

White and Racine (2001) Predictable regularities Raw returns Not take into account heteros.

in exchange rates

Conditional variance

Tauchen et al. (1996) Persistence Sampling from Dynamic impulse response

Asymmetry …tted conditional analysis

Relation vol.-prices density

Brock. and Chow. (1997) Chaos Raw returns Not take into account heteros.

Bollers. and Mikk. (1999) Fractional integration Standard. returns Best model: FIEGARCH

Blake and Kapet. (2000) ARCH Raw returns Arti…cial neural network

Under the null is appropriate

Eftekhari et al. (2000) Measures of risk Raw returns Monthly data (homoscedastic)
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Table 3 (cont.). Summary of recent bootstrap applications testing for dynamics of returns

Author Test for Boot. procedure Results

Technical trading rules

Brock et al. (1992) Performance of TTR Standard. returns TTR are pro…table

Kho (1996) Performance of TTR Standard. returns Di¤erent conclusions with

standard and bootstrap tests

Mills (1997) Performance of TTR Standard. returns Predictability dissapears

after 1980

Besse. and Chan (1998) Performance of TTR Raw returns Not take into account heteros.

Ito (1999) Performance of TTR Standard. returns Importance of time-varying

expected returns

LeBaron (1999) Performance of TTR Raw returns E¤ect of Federal Reserve

Not take into account heteros.

White (1999) Performance of TTR Stationary boot. Avoid data snooping

Sullivan et al. (1999) Performance of TTR Stationary boot. Outperformance disappears

out of sample

Chang and Osler (1999) Performance of TTR Raw returns Not take into account heteros

Millet and Michel (2000) Performance of TTR Raw returns Not take into account heteros

Taylor (2000) Performance of TTR Standard. returns Test based on TTR have less

power than standard

uncorrelation tests

Other applications - - -

Ikenberry et al. (1995) Event study Long-run returns are not zero

Kothari and Warner (1997) Event study Parametric long-horizon tests

can be missleading

Stanton (1997) Term structure Block boot. Continuos time

Garrant et al. (2001) Target-zone Block boot. Nonlinearities in speci…c

nonlinearities subsamples

Carriere (2000) Forward rates Block boot. Uses splines

Groene. and Fraser (2001a) Asset Pricing model Block boot. Monthly data (homosced.)

Groene. and Fraser (2001b) Asset Pricing model Block boot. Monthly data (homosced.)
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Table 4. Monte Carlo results on VaR values using

conditionally Gaussian GARCH(1,1) model and bootstrap methods.

Student-5 distribution

Forecast Sample Average VaR values

horizon size Empirical Normal GARCH Bootstrap1 Bootstrap2

1 T Probability - - - - -

300 10% -1.094 -1.253 -1.212 -1.090 -1.084

5% -1.497 -1.616 -1.563 -1.534 -1.499

1% -2.538 -2.272 -2.197 -2.746 -2.548

1000 10% -1.081 -1.264 -1.202 -1.073 -1.079

5% -1.478 -1.630 -1.549 -1.504 -1.477

1% -2.504 -2.291 -2.178 -2.747 -2.505

5 T Probability - - - - -

300 10% -1.086 -1.253 -1.238 -1.088 -1.080

5% -1.499 -1.616 -1.596 -1.533 -1.506

1% -2.588 -2.272 -2.244 -2.751 -2.637

1000 10% -1.075 -1.264 -1.224 -1.079 -1.073

5% -1.485 -1.630 -1.578 -1.513 -1.483

1% -2.565 -2.291 -2.218 -2.755 -2.592

10 T Probability - - - - -

300 10% -1.083 -1.253 -1.257 -1.085 -1.078

5% -1.508 -1.616 -1.621 -1.530 -1.509

1% -2.656 -2.272 -2.278 -2.768 -2.673

1000 10% -1.074 -1.264 -1.242 -1.075 -1.072

5% -1.495 -1.630 -1.601 -1.513 -1.496

1% -2.630 -2.291 -2.251 -2.769 -2.654

20 T Probability - - - - -

300 10% -1.079 -1.253 -1.278 -1.086 -1.074

5% -1.510 -1.616 -1.648 -1.528 -1.509

1% -2.695 -2.272 -2.318 -2.744 -2.734

1000 10% -1.074 -1.264 -1.264 -1.078 -1.069

5% -1.503 -1.630 -1.629 -1.518 -1.497

1% -2.682 -2.291 -2.291 -2.767 -2.692
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Table 5. Monte Carlo results on VaR values using

conditionally Gaussian GARCH(1,1) model and bootstrap methods.

-Â2 distribution with 4 degrees of freedom

Forecast Sample Average VaR values

horizon size Empirical Normal GARCH Bootstrap1 Bootstrap2

1 T Probability - - - - -

300 10% -1.284 -1.254 -1.220 -1.271 -1.280

5% -1.869 -1.616 -1.572 -1.881 -1.863

1% -3.178 -2.272 -2.211 -3.323 -3.140

1000 10% -1.292 -1.263 -1.238 -1.259 -1.296

5% -1.879 -1.628 -1.597 -1.867 -1.882

1% -3.195 -2.289 -2.245 -3.375 -3.200

5 T Probability - - - - -

300 10% -1.278 -1.254 -1.242 -1.272 -1.272

5% -1.873 -1.616 -1.601 -1.887 -1.860

1% -3.247 -2.273 -2.251 -3.321 -3.204

1000 10% -1.283 -1.263 -1.255 -1.260 -1.282

5% -1.881 -1.628 -1.617 -1.863 -1.884

1% -3.256 -2.289 -2.274 -3.368 -3.278

10 T Probability - - - - -

300 10% -1.276 -1.254 -1.257 -1.275 -1.265

5% -1.881 -1.616 -1.620 -1.884 -1.862

1% -3.332 -2.273 -2.278 -3.305 -3.260

1000 10% -1.281 -1.263 -1.267 -1.259 -1.270

5% -1.888 -1.628 -1.634 -1.863 -1.869

1% -3.341 -2.289 -2.297 -3.376 -3.330

20 T Probability - - - - -

300 10% -1.252 -1.254 -1.274 -1.275 -1.253

5% -1.869 -1.616 -1.642 -1.886 -1.855

1% -3.365 -2.273 -2.309 -3.285 -3.296

1000 10% -1.265 -1.262 -1.281 -1.256 -1.257

5% -1.874 -1.628 -1.651 -1.860 -1.860

1% -3.376 -2.289 -2.321 -3.383 -3.348
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Table 6. Summary of recent bootstrap applications to estimate the distribution of returns

Author Model Boot. proced. Results

Prediction of returns

Mig. and Olav. (1999a) ARMA-GARCH(1,1) Stand. returns Conditional on parameter estimates

Asymptotic validity

Mig. and Olav. (1999b) ARMA-GARCH(1,1) Stand. returns Conditional on parameter estimates

Monte Carlo results

Pascual et al. (2000) GARCH(1,1) Stand. returns Parameter uncertainty.

Asympt. and …nite samp properties

Gospodinov (2002) Highly persistent AR Raw returns Finite sample properties

Backward repr. Forecast interest rates

Prediction of volatilities

Pascual et al. (2000) GARCH(1,1) Stand. returns Parameter uncertainty.

Asympt. and …nite samp properties

Value at Risk

Baro.-Ad. et al. (1999) GARCH(1,1) Stand. returns Conditional on parameter estimates

Vlaar (2001) GARCH(1,1) Raw returns Boot. satisfactory for long series

Baro.-Ad. et al. (2001) GARCH(1,1) Raw returns Advantages of Stand. boot. when

Stand. returns there are options in portfolio
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Fig. 1. Empirical and bootstrap densities of variance ratio statistic for a series gener-

ated by a GARCH(1,1) model with conditional Student-t distribution with 5 degrees

of freedom. T=300
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Fig. 2. Empirical and bootstrap densities of variance ratio statistic for a series gener-

ated by a GARCH(1,1) model with conditional Student-t distribution with 5 degress

of freedom. T=1000
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Fig. 3. Daily returns of Pound-Dollar exchange rate observed from 1 January 1990

to 31 December 2001.
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Fig. 4. Kernel density of Pound-Dollar exchange rate returns standardized with

GARCH(1,1) standard deviations.
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Fig. 5. Bootstrap densities of 1, 5, 10 and 20 steps ahead forecasts of Pound-Dollar

exchange rate returns.
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Fig. 6. Box-Jenkins and bootstrap 80% and 95% prediction intervals for Pound-Dollar

exchange rate returns together with point predictions (±) and actual vlaues (²).
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Fig. 7. Bootstrap densities of 1, 2, 10 and 20 steps ahead Pound-Dollar exchange

rate volatilities.
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Fig. 8. Bootstrap prediction intervals for future Pound-Dollar exchange rates volatil-

ities together with their GARCH point predictions (²).
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