
Predicting the Direction of Swap Spreads 
 

Paul Teetor 
March, 2007 

 
 

Abstract 
A model is developed for predicting the direction of 10-year swap spreads from 
related financial time series, such as Treasury bond prices, short-term interest 
rates, stock indexes, and swap spreads of other maturities.  The model is shown to 
be statistically significant, and is shown to be (theoretically) profitable using an 
in-sample test. 
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Introduction 
The goal of this project is to predict the future direction of swaps spreads. 
 
The definition of swap spread (or simply spread) can get quite technical, but for our 
immediate purposes, the reader can think of swap spreads as a measure of risk in the 
banking system – not necessarily catastrophic risk such as a total system failure, but 
rather the day-to-day business risk caused by shifting interest rates and liquidity in the 
money markets. 
 
There is an active market for swap spreads, letting traders hedge their risk and speculate 
on the direction of spreads.  The market is enormous.  The notional trading in swap 
spreads is on the order of billions of dollars per day, and successful spread traders can 
generate substantial profits. 
 
Generally, predicting the future of financial prices is quite difficult.  A large body of 
research based on the Efficient Market Hypothesis predicates that such predictions are not 
merely difficult, but actually impossible.  See [Brealey 1983] and [Malkiel 1985] for an 
introduction to that research. 
 
I, too, am normally pessimistic regarding market forecasting, but the case of swap 
spreads holds some interesting possibilities. 
 
First, the spread is range-bound.  It resembles a mean-reverting variable rather than a 
trending variable. 
 
Second, the spread is well-correlated with other financial data.  It seems feasible that we 
could develop a linear regression of its value. 
 
Third, forecasting the spread’s direction would be sufficient.  Forecasting the magnitude 
is more difficult, but not necessarily required for practical applications. 
  
Based on these considerations, I decided to explore the possibility of predicting the 
direction of swap spreads using logistic regression. 

Conventions 
Unless otherwise stated, all tests are performed at the 95% confidence level (α = 0.05). 
 
Most, but not all, statistical studies were conducted using R, a language and environment 
for statistical computing [Venables 2002].  Since the R system is interactive, I distinguish 
user commands from system output by showing the user’s input in bold. 
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Background 

What is a “swap spread”? 
Technically, a swap spread is the difference between two interest rates.  For this project, 
however, I will use a simplified definition based on futures traded on the Chicago Board 
of Trade (CBOT). 
 

The 5-year swap spread is calculated as 
 
 SS5 = T5 - S5
 
where T5 is the price of the 5-year Treasury notes futures, and S5 is the price of the 
5-year interest rate swap futures. 
 
Likewise, the 10-year swap spread is calculated as 
 
 SS10 = T10 - S10
 
where and T10 is the price of the 10-year Treasury note futures, and S10 is the price 
of the 10-year interest rate swap futures. 

 
Both swap spreads are always positive since Treasury prices are always larger than swap 
prices.  Furthermore, the spreads oscillate within a relatively narrow range.  Here, for 
example, are graphs of the 5-year and 10-spreads collected for this study.  There are 
about 250 trading days in one calendar year, so these graphs represent about 4 years of 
data. 
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For this report, I will focus on the 10-year spreads, and henceforth “the spread” is 
understood to be the 10-year swap spread.  The report logic is applicable to 5-year 
spread, too, but the constraint of time prevented me from investigating their models. 

Influential Factors 
Based on discussions with several traders, I knew the following are influential factors in 
pricing 10-year swap spreads. 

 The general level of interest rates, especially rates on Treasury bonds. 
 The level of short-term interest rates, such as 90-day money market rates. 
 The general level of US stock prices. 
 The prices of bank stocks in particular. 
 The levels of other swap spreads, such as the 5-year spread. 

 
These factors guided my selection of data for explanatory variables. 

Research Hypotheses and Planned Tests 
There are two hypotheses in this report. 
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Hypothesis #1:  We can model the fair value of swap spreads based on a linear 
regression of influential market data. 

 
If the hypothesis is correct and we can model the spread’s fair value, then we can 
calculate the market mispricing as the difference between the modeled value and the 
actual price.  Those mispricings (residuals) are the basis of the second hypothesis. 

 
Hypothesis #2: Using the mispricing data and simple technical indicators as 
explanatory variables, we can predict the direction of swap spreads using a 
logistic regression. 

 
A technical indicator is a simple statistic calculated from recent market history.  There 
are many, many technical indicators; see [Colby 1988], for example.  A large area of 
market research called technical analysis is devoted to characterizing and predicting 
market behavior based on those indicators.  Some technical analysis is solid, respectable 
work; some is little more than codified superstition.  
 
I am familiar with the successful work reported in [Harland 2000] which used a class of 
technical indicators called momentum indicators to predict prices of Treasury bond 
futures.  Based on that work, I decided to include simple momentum indicators in the 
logistic regression to evaluate their effectiveness in predicting the swap spread’s 
direction. 

Planned Tests 
Hypothesis #1 -- that we can predict fair value -- is not directly testable per se.  There is 
no objective standard of “fair value”, so we have nothing against which to compare our 
predictions.  We are limited to testing the hypothesis using the usual goodness of fit 
criteria 
 
We will indirectly test the first hypothesis, however, when we build the logistic 
regression to predict spread direction from the mispricing data:  If the fair value model is 
meaningful, then the mispricings will be meaningful, too, and the logistic regression will 
identify them as a significant predictor. 
 
Hypothesis #2 – predicting direction from mispricings – presents more opportunities.  
First, we can test its goodness of fit.  Second, we can use its output in a simulated trading 
process to evaluate its practical significance as a viable market predictor. 

Data Collected 
All data for this study are time series data.  Most of the relevant time series have long 
histories, but the price history of the two CBOT interest rate swap futures is limited.  
Those futures began trading in 2001 and 2002, so this study can only span the most 
recent 5 years of market history. 
 
The final data set contained 968 observations, one for every trading day from 2/4/2003 to 
12/14/2006. 
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Basic Time Series Data 
I obtained these data from Commodity Systems Inc. of Boca Raton, FL 
(http://www.csidata.com). 

 TSY5 – Price history for the CBOT 5-year Treasury note futures. 
 TSY10 – Price history for the CBOT 10-year Treasury note futures. 
 SWP5 – Price history for the CBOT 5-year interest rate swap futures. 
 SWP10 – Price history for the CBOT 10-year interest rate swap futures. 
 LIBOR – Price history for the London Inter-Bank Offering Rate (LIBOR), a 

widely used measure of short-term interest rates for 90-day, dollar-denominated 
deposits in international banks. 

 
I obtained these data from the Yahoo! Finance web site (http://finance.yahoo.com). 

 SPX – Price history for the Standard & Poor’s 500, a widely diversified index of 
US stock prices. 

 BIX – Price history for the Standard & Poor’s’ Bank Stock Index, a narrow index 
of US bank stock prices. 

Computed Time Series Data 
From the basic time series, I applied our working definition of swap spread to compute 
these time series. 

 SS5 = TSY5 – SWP5 
 SS10 = TSY10 – SWP10 

Computed Categorical Data: Momentum and Acceleration 
The study used momentum and acceleration indicators as explanatory variables for the 
logistic regression.  There are categorical variables derived from numerical calculations. 
 
Numerically, momentum is simply the change over a fixed look-back period. 

 mom3 = SS10[0] – SS10[3] 
 mom5 = SS10[0] – SS10[5] 
 mom8 = SS10[0] – SS10[8] 
 mom13 = SS10[0] – SS10[13] 
 mom21 = SS10[0] – SS10[21] 

 
where SS10[0] is today’s swap spread, SS10[3] is the swap spread from 3 days ago, etc. 
 
Numerically, acceleration is the rate of change of momentum; in this case, the 1-day 
change. 

 acc3 = mom3[0] – mom3[1] 
 acc5 = mom5[0] – mom5[1] 
 acc8 = mom8[0] – mom8[1] 
 acc13 = mom13[0] – mom13[1] 
 acc21 = mom21[0] – mom21[1] 
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All momentum and acceleration numerical values were converted to categorical values 
(“Pos” or “Neg”) according to their sign:  Positive values were converted to “Pos”, and  
negative values were converted to “Neg”. 

Computed Categorical Data: Forward Direction 
The response variables for the logistic regressions were categorical variables which 
indicated the future change of the spread, 10 days forward.  There were two binary-
valued variables, one to indicate a rising spread (buying opportunity), and one to indicate 
a falling spread (selling opportunity). 
 
The calculation of the response variables proceeded in several steps.  First, I formed these 
two time series. 
 

1. ΔSS10i = Change in SS10, 10 days into the future 
2. Zi = normalized ΔSS10 = (ΔSS10i – mean(ΔSS10)) / sd(ΔSS10). 

 
Then the daily categorical values were calculated as 
 

3. fwd10.buyi = If Zi > 0.25, then true; otherwise false. 
4. fwd10.selli = If Zi < -0.25, then true; otherwise false. 

 
I ignored days with Z values between -0.25 and 0.25, reasoning that such small changes 
in price were too “noisy” to provide useful information. 

Sample Statistics: Quantitative Variables 
These are the descriptive statistics for the study’s quantitative variables. 
 

Variable Summary, Standard Deviation, and Histogram 
TSY5    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 

  102.9   106.0   108.5   108.6   110.8   116.6 
 
 SD: 3.088915 
 

 
TSY10    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
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  104.0   108.3   110.6   110.4   112.2   119.8 
 
 SD: 3.010735 
 

 
SWP5    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 

  100.9   104.7   107.3   107.4   109.6   116.3 
 
 SD: 3.301308 
 

 
SWP10    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 

  101.2   106.7   109.1   108.9   111.0   120.3 
 
 SD: 3.493300 
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LIBOR    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 

  0.910   1.325   3.180   3.167   4.811   5.690 
 
 SD: 1.633334 
 

 
SPX    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 

  800.7  1094.0  1176.0  1156.0  1256.0  1425.0 
 
 SD: 130.1263 
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BIX    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 

  257.6   334.7   355.7   349.4   370.4   406.4 
 
 SD: 31.42592 
 

 
SS5    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 

 0.2188  0.9688  1.2190  1.2190  1.4690  2.0310 
 
 SD: 0.365106 
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SS10    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 

-0.6094  1.0000  1.5310  1.5430  2.0780  3.5620 
 
 SD: 0.7863546 
 

 
 
 
This is the correlation matrix for the quantitative variables. 
 

         SS10  TSY10   TSY5   LIBOR     SPX    BIX    SS5 
SS10   1.0000 -0.532 -0.273 -0.0264  0.0485  0.119  0.800 
TSY10 -0.5323  1.000  0.932 -0.7409 -0.6809 -0.598 -0.700 
TSY5  -0.2726  0.932  1.000 -0.9236 -0.8395 -0.744 -0.543 
LIBOR -0.0264 -0.741 -0.924  1.0000  0.8732  0.768  0.318 
SPX    0.0485 -0.681 -0.840  0.8732  1.0000  0.944  0.320 
BIX    0.1190 -0.598 -0.744  0.7679  0.9437  1.000  0.332 
SS5    0.8003 -0.700 -0.543  0.3176  0.3201  0.332  1.000 

 

Sample Statistics: Categorical Variables 
Many traders believe that the usefulness of a momentum indicator depends upon its look-
back period; that a 3-day momentum indicator has a different meaning than a 13-day 
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momentum indicator, for example.  This belief was the motivation for including 
momentum and acceleration indicators with various look-back periods. 
 
This belief was not born out by statistical testing.  For the 2x2 tables formed by pairing 
different momentum indicators against each other, the resulting χ2 tests revealed a very 
strong statistical dependency between every pair of momentum indicators:  the p-values 
were essentially zero.  Ergo, the different indicators are largely redundant1. 
 
Because of the large number of momentum and acceleration variables, and because they 
all have very similar distributions, only two momentum and two acceleration variables 
are shown here. 
 
mom5 – 5-day momentum indicator 

 

 
 

mom8 – 8-day momentum indicator 

 
 

                                                 
1 The degree of redundancy between momentum indicators was further evidenced during the logistic 
regression, discussed later.  The forward-selection process showed that one momentum indicator was 
useful, but an additional indicator added no value. 
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acc5 – 5-day acceleration indicator 

 
 
acc8 – 8-day acceleration indicator 

 
 
Here are the bar charts for the response variables, both for buy and sell opportunities. 
 
fwd10.buy – Response variable for “buy” model 
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fwd10.sell – Response variable for “sell” model 

 
 

Analysis 

Linear Regression Model 
I modeled the spread’s fair value as a linear regression on the predictor variables. 
 

SPXBIXLIBORSSTSYTSYSSE ⋅+⋅+⋅+⋅+⋅+⋅+= 654321 5510)10( ββββββα  
 
The regression produced this model. 
 
Call: 
lm(formula = SS10 ~ TSY10 + TSY5 + SS5 + LIBOR + BIX + SPX, data = export) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-1.30790 -0.16043  0.04775  0.20770  0.83401  
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept) 12.735824   1.875479   6.791 1.95e-11 *** 
TSY10       -0.268633   0.020827 -12.898  < 2e-16 *** 
TSY5         0.151297   0.033472   4.520 6.95e-06 *** 
SS5          1.088649   0.044823  24.288  < 2e-16 *** 
LIBOR       -0.200270   0.033151  -6.041 2.18e-09 *** 
BIX          0.011778   0.001089  10.813  < 2e-16 *** 
SPX         -0.002391   0.000342  -6.993 5.03e-12 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Residual standard error: 0.3177 on 961 degrees of freedom 
Multiple R-Squared: 0.8377,     Adjusted R-squared: 0.8367  
F-statistic: 826.9 on 6 and 961 DF,  p-value: < 2.2e-16 

 
The fitted regression equation is 
 

SPXBIX
LIBORSSTSYTSYSSE

⋅−⋅+
⋅−⋅+⋅+⋅−=

00239.00118.0
2.0509.15151.010269.07.12)10(
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Evaluation of the Linear Regression 
The model of fair value is statistically significant:  All parameters have p-values which 
are essentially zero, indicating that every parameter coefficient is non-zero and, hence, 
every parameter is significant. 
 
The R2 is 0.8377, indicating that the model explains over 83% of the variation in swap 
spreads, which is very good. 
 
The standard diagnostic plots of the residuals do not reveal any serious problems with the 
fit. 
 

 
 
One data point appears to have high leverage, but its residual is nearly zero and, hence, 
the problem is not significant. 
 
The reader should be aware of something, however.  The diagnostic plot of residuals 
appears benign, but when the residuals are re-plotted as a time series, we get another 
perspective. 
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When viewed as a time series, the residuals do not appear random.  Rather, they show a 
serial dependence.  Is this a problem?  For our immediate purposes, it is not. 
 
In pure time series modeling, we might be disappointed that the residuals seem to contain 
useful information, and we might enhance our model to exploit that information.  But 
here, our intention is the opposite: We will use the residuals as one input to the logistic 
regression of the spread direction.  We want the residuals to contain useful information 
regarding mispricings. 
 
As a final evaluation of the model, we can check the influence measures.  Given the 
sample size, checking individual observations would be tedious.  Instead, we start with a 
broad check of the DFFIT and DFBETA values, then isolate problematic observations if 
necessary.  The following R commands will calculate the influence measures of the 
sample, and then produce box plots of the DFBETA values (which in this case are the 
first 7 columns of the influence measures.) 
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> infl = influence.measures(models$ss10.spot.full) 
> boxplot(as.data.frame(infl$infmat[,1:7])) 

 
This is the resulting plot. 

 
 
Clearly, none of the DFBETA values exceed our guideline of ±1.0. 
 
Similarly, we can create a box plot of the DFFIT values. 

 
 
Again we see that no value exceeds our guideline of ±1.0. 
 
The plot of “hat” values does reveal one observation above our guideline of 3n/p = 
3×7/968 = 0.02169. 
 

 17



 
 
That observation, however, is the extreme leverage observation identified in the 
Residuals vs. Leverage plot, above.  As noted, that observation is not a problem due to its 
low residual. 
 

Reducing the Linear Regression Model 
By “piling on” all the explanatory variables into the initial regression, we may have 
included extraneous variables which provide no explanatory power beyond a reduced 
model.  We can test this conjecture using the drop1 function of R, which performs 
sequential deletions of single terms from the model, performing a χ2 calculation to test 
the hypothesis that the full model and the reduced model have equivalent explanatory 
power.  (The drop1 function is essentially one step of a backward selection procedure.) 
 

> drop1(models$ss10.spot.full, test="Chisq") 
Single term deletions 
 
Model: 
SS10 ~ TSY10 + TSY5 + SS5 + LIBOR + BIX + SPX 
       Df Sum of Sq      RSS      AIC   Pr(Chi)     
<none>                 97.02 -2212.69               
TSY10   1     16.80   113.82 -2060.14 < 2.2e-16 *** 
TSY5    1      2.06    99.08 -2194.33 6.401e-06 *** 
SS5     1     59.55   156.58 -1751.40 < 2.2e-16 *** 
LIBOR   1      3.68   100.71 -2178.61 1.893e-09 *** 
BIX     1     11.81   108.83 -2103.54 < 2.2e-16 *** 
SPX     1      4.94   101.96 -2166.64 4.162e-12 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 
From this output, we see that all p-value of every model was essentially zero, and we 
reject the hypothesis that any reduced model had equivalent explanatory power.  We 
conclude that the full model cannot be reduced without damaging its value. 
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Logistic Regression Model: Minimal Model 
I performed two logistic regressions, one to predict the probability of a rising market (the 
“buy” model), and the other to predict the probability of a falling market (the “sell” 
model).  I started with these minimal models 
 
 log(odds(Up)) = αup + betaup×RESID 
 
 log(odds(Dn)) = αdn + betadn×RESID 
 
where RESID is the time series of residuals from the fair value model (above).  The 
logistic regression produced these fits of the minimal models. 
 
Buy model: 
 

Call: 
glm(formula = object$ss10.fwd10.buy ~ resids$ss10.spot.full,  
    family = binomial(), data = export) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-1.5594  -0.9710  -0.8479   1.2875   1.7530   
 
Coefficients: 
                      Estimate Std. Error z value Pr(>|z|)     
(Intercept)           -0.44550    0.06736  -6.613 3.76e-11 *** 
resids$ss10.spot.full -1.39703    0.22187  -6.297 3.04e-10 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 1297.8  on 967  degrees of freedom 
Residual deviance: 1254.8  on 966  degrees of freedom 
AIC: 1258.8 
 
Number of Fisher Scoring iterations: 4 

 
Sell model: 
 

Call: 
glm(formula = object$ss10.fwd10.sell ~ resids$ss10.spot.full,  
    family = binomial(), data = export) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-1.4882  -1.0801  -0.8337   1.2132   1.8840   
 
Coefficients: 
                      Estimate Std. Error z value Pr(>|z|)     
(Intercept)           -0.28378    0.06648  -4.268 1.97e-05 *** 
resids$ss10.spot.full  1.39232    0.23198   6.002 1.95e-09 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
(Dispersion parameter for binomial family taken to be 1) 
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    Null deviance: 1325.0  on 967  degrees of freedom 
Residual deviance: 1284.8  on 966  degrees of freedom 
AIC: 1288.8 
 
Number of Fisher Scoring iterations: 4 

 
The fitted equations are 
 
 log(odds(Up)) = -0.446 – 1.40×RESID  (Buy model) 
 
 log(odds(Up)) = -0.284 + 1.39×RESID  (Sell model) 
 
We want to know if the RESID variable is significant; that is, do the residuals from the 
linear regression really contain information useful to the logistic regression? 
 
For the buy model, the log-likelihood test for the significance of β has a p-value of 
χ2(42.95, 1), which is essentially zero.  For the sell model, the p-value is χ2(40.19, 1), 
which is also essentially zero.  So for the both models, yes, the RESID data is significant. 

Logistic Regression Model: Forward Selection 
As stated, the initial logistic regression was a minimal model.  We also want to 
incorporate a simple momentum indicator and determine if that improves the model. 
 
The R system includes the add1 function which performs one step of the forward-
selection process, letting us test new explanatory variables for inclusion in the model.  
We can use add1 to test the inclusion of momentum indicators in both models, buy and 
sell. 
 
Buy model: 
 

Single term additions 
 
Model: 
object$ss10.fwd10.buy ~ resids$ss10.spot.full 
           Df Deviance     AIC     LRT  Pr(Chi)    
<none>         1254.81 1258.81                     
SS10.mom3   1  1250.83 1256.83    3.98 0.046041 *  
SS10.mom5   1  1244.61 1250.61   10.20 0.001406 ** 
SS10.mom8   1  1247.37 1253.37    7.44 0.006378 ** 
SS10.mom13  1  1253.40 1259.40    1.42 0.234008    
SS10.mom21  1  1253.29 1259.29    1.52 0.217429    
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 
Sell model: 
 

Single term additions 
 
Model: 
object$ss10.fwd10.sell ~ resids$ss10.spot.full 
           Df Deviance     AIC     LRT  Pr(Chi)    
<none>         1284.77 1288.77                     
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SS10.mom3   1  1280.35 1286.35    4.42 0.035590 *  
SS10.mom5   1  1276.86 1282.86    7.91 0.004916 ** 
SS10.mom8   1  1275.13 1281.13    9.63 0.001911 ** 
SS10.mom13  1  1281.36 1287.36    3.41 0.064818 .  
SS10.mom21  1  1284.54 1290.54    0.23 0.631080    
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 
For both models, the mom5 and mom8 indicators were significant additions, as indicated 
by the low p-values to test the equivalence of the minimal models versus the expanded 
models.  It appears to me that the mom5 indicator has a slight advantage, so I 
incorporated it into the logistic regressions. 
 
After incorporating mom5, however, further expansion of the model yielded no 
improvements.  Here is the add1 output for inclusion of an additional indicator. 
 
Buy model: 
 

Single term additions 
 
Model: 
object$ss10.fwd10.buy ~ (resids$ss10.spot.full + SS10.mom5) 
           Df Deviance     AIC     LRT Pr(Chi) 
<none>         1244.61 1250.61                 
SS10.mom3   1  1244.59 1252.59    0.02  0.8880 
SS10.mom8   1  1243.56 1251.56    1.05  0.3051 
SS10.mom13  1  1244.58 1252.58    0.03  0.8545 
SS10.mom21  1  1244.52 1252.52    0.09  0.7625 

 
Sell model: 
 

Single term additions 
 
Model: 
object$ss10.fwd10.sell ~ (resids$ss10.spot.full + SS10.mom5) 
           Df Deviance     AIC     LRT Pr(Chi)   
<none>         1276.86 1282.86                   
SS10.mom3   1  1276.55 1284.55    0.30 0.58200   
SS10.mom8   1  1273.73 1281.73    3.13 0.07705 . 
SS10.mom13  1  1276.34 1284.34    0.52 0.47052   
SS10.mom21  1  1276.71 1284.71    0.15 0.70169   

 
The p-values are for the comparison of the mom5-only model against the model with both 
mom5 and another momentum indicator.  They are uniformly large; in fact, all but one 
are remarkably large.  We conclude that inclusion of an addition momentum indicator – 
any additional momentum indicator – is unproductive. 
 
A similar check of the acceleration indicators, described above, revealed that they 
contained no useable explanatory power.  Not a single acceleration indicator improved 
the model quality, according to the χ2 test of the add1 function. 
 
The final regression models are 
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Buy model: 
 

Call: 
glm(formula = object$ss10.fwd10.buy ~ (resids$ss10.spot.full +  
    SS10.mom5), family = binomial(), data = export) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-1.7062  -0.9950  -0.8071   1.2691   1.8057   
 
Coefficients: 
                      Estimate Std. Error z value Pr(>|z|)     
(Intercept)           -0.64974    0.09443  -6.881 5.95e-12 *** 
resids$ss10.spot.full -1.49669    0.22531  -6.643 3.08e-11 *** 
SS10.mom5Pos           0.43651    0.13722   3.181  0.00147 **  
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 
 Equation:  log(odds(Up)) = -0.640 – 1.50×RESID + 0.437×MOM5 
 
Sell model: 
 

Call: 
glm(formula = object$ss10.fwd10.sell ~ (resids$ss10.spot.full +  
    SS10.mom5), family = binomial(), data = export) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-1.4552  -1.0714  -0.8269   1.1885   2.0046   
 
Coefficients: 
                      Estimate Std. Error z value Pr(>|z|)     
(Intercept)           -0.11389    0.08963  -1.271  0.20387     
resids$ss10.spot.full  1.46583    0.23360   6.275  3.5e-10 *** 
SS10.mom5Pos          -0.37728    0.13469  -2.801  0.00509 **  
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 
Equation:  log(odds(Down)) = -0.114 – 1.47×RESID - 0.377×MOM5 

 

Simulated Trading 
So far, this entire study has been “just statistics”.  The models pass their statistical tests, 
but are they useful? 
 
A basic test of usefulness is the application of the models to simulate trading using the in-
sample data.  We would prefer out-of-sample data, of course.  But if the models fail on 
in-sample data, there is no hope, so we can start there. 
 
To use the logistic regressions for trading, we follow these rules, using the probabilities 
implied from the calculated log odds for each day. 
 
 Buy model:  If prob(Up) > 0.5, buy today’ market. 
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 Sell model:  If prob(Down) > 0.5, sell today’s market. 
 
Together, these rules produced a gross profit of $12,529.70 over the test period, trading 
one spread.  That is approximately $3,200 per annum.  (These are gross figures because 
they do not include transaction costs such as broker’s fees.) 
 
This is the graph of the cumulative profit and loss from the simulation. 

 
 

Evaluation of Simulated Trading 
To evaluate the simulated results, I started with the day-by-day output of the simulation, 
which is a time series of tuples, one tuple for each simulated day. 
 
 <Decision, Outcome> 
 
Outcome is the market’s subsequent direction, either “Up” or “Dn”, after the day.  The 
data set contained 451 observations.  (Some days have no associated decision, either buy 
or sell, and so generated no tuple.) 
 
From this data I formed the 2x2 contingency table expressing the relationship between 
decisions and outcomes. 
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Frequency  
Expected  

Cell Chi-Square 
Percent  
Row Pct  
Col Pct  

 

Table of Signal by Outcome 

Outcome Signal

"Dn"  "Up"  

Total 

"Buy" 71 
94.958
6.0446
15.74 
44.10 
26.69 

90 
66.042
8.6911
19.96 
55.90 
48.65 

161 
  
  
35.70 
  
  

"Sell" 195 
171.04
3.3558
43.24 
67.24 
73.31 

95 
118.96
4.8251
21.06 
32.76 
51.35 

290 
  
  
64.30 
  
  

Total  266 
58.98 

185 
41.02 

451 
100.00 

 
 
Fortunately, the categorical variables, Decision and Outcome, are ordinal, not merely 
nominal, and we can apply the Cochran-Armitage trend test.  A SAS script yielded these 
test results (see Appendix for SAS code). 
 

Cochran-Armitage Trend Test

Statistic (Z) 4.7871 

One-sided Pr > Z <.0001 

Two-sided Pr > |Z| <.0001 

 
The p-value is essentially zero, and we can reject the hypothesis that Outcome is 
independent of Decision.  The decisions are statistically significant. 

Summary and Conclusions 
 Using a linear regression, we can create a model for fair value of a swap spreads 

predicted from Treasury bond prices, short-term interest rates, the general level of 
stocks prices, an index of bank stock prices, and other swap spreads. 
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 Using a logistic regression, we can exploit the residuals from the linear regression 
to predict the direction of swap spreads. 

 We can improve the logistic regression by incorporating a momentum indicator as 
an explanatory variable.  One indicator is sufficient, however; additional 
indicators do not enhance the model’s predictive power. 

 Simulated trading using in-sample data verified the usefulness of the logistic 
regression:  it did produce usable trading decisions, and the decisions were 
statistically significant. 

Limitations 
This study has several limitation, including: 
 

 The study uses less than 5 years of data.  I would prefer 10 years or more, but the 
CBOT swaps futures have been trading for only slightly longer than 5 years. 

 I used a non-standard definition of “swap spread”.  While it is a practical 
alternative to the common definition, professional traders might not recognize it 
as equivalent. 

 The models are relatively simple.  In particular, the logistic model contains only 
two explanatory variables, and no interaction terms.  Some preliminary 
exploration revealed that interaction terms might be useful. 

 I explored only two classes of technical indicators for inclusion in the logistic 
regression.  There are many other candidate indicators. 

 The simulated trading did not include frictional costs, such as broker’s fees and 
bid/ask spreads. 

 The simulated trading used in-sample data. 

Recommendations 
To pursue this study further, I recommend these steps. 

 Perform the simulated trading on out-of-sample data, verifying that the models 
have abstracted useful information from the original sample. 

 Estimate the impact of frictional costs on trading. 
 Explore the inclusion of additional or alternative technical indicators in the 

logistic regression. 
 Explore the effective of interaction terms in the logistic regression. 
 Some of my explorations into correlations indicated that controlling for short-term 

interest rates (LIBOR) revealed statistical interactions between other variables.  
This could be a very fruitful area for research. 
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Appendix: Catalog of Variables 
This is a catalog of the variables which I collected prior to beginning my statistical 
exploration.  Note that not all variables were actually used in the final model. 

Raw Data 
Price, rate, and index data is all quantitative.  These are the explanatory variables for the 
multivariate linear regression models. 
 
• Date – Date of observation 
• SS10 – Swap spread price, 10-year maturity 
• SS5 – Swap spread price, 5-year maturity 
• TSY10 – Treasury bond price, 10-year maturity 
• TSY5 – Treasury bond price, 5-year maturity 
• SWP10 – Swap price, 10-year maturity 
• SWP5 – Swap price, 5-year maturity 
• LIBOR – Short-term interest rate 
• BIX – Index of bank stock prices 
• SPX – S&P 500 index of stock prices 
 
Technical details, of interest only to dedicated finance geeks: 
 

1. The time series derived from futures prices (TSY5, TSY10, SWP5, SWP10) were 
constructed by Commodity Systems Inc. (CSI) using their proprietary Perpetual 
Contract algorithm. 

2. I computed the LIBOR time series from prices of the near-by CME Eurodollar 
futures contract as L = 100 – ED, where ED is the futures price.  Strictly speaking, 
then, this is a forward rate, not the spot rate.  (Using the CME 1-month Libor 
contract would have yielded a closer approximation to the spot rate.)  Using spot 
rates is problematic, however, due to timing issues between the time at which 
LIBOR is fixed in London, and the time at which the US futures market closes.  
Using the Eurodollar-implied rate provides a timelier estimate of the short-term 
rate. 

Derived Values: Technical Indicators 
Momentum and acceleration indicators are binary (positive/negative).  These are 
explanatory variables for the logistic models. 
 
• SS10.mom3 – SS10, 3-day momentum indicator 
• SS10.mom5 – SS10, 5-day momentum indicator 
• SS10.mom8 – SS10, 8-day momentum indicator 
• SS10.mom13 – SS10, 13-day momentum indicator 
• SS10.mom21 – SS10, 21-day momentum indicator 
• SS5.mom3 – SS5, 3-day momentum indicator 
• SS5.mom5 – SS5, 5-day momentum indicator 
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• SS5.mom8 – SS5, 8-day momentum indicator 
• SS5.mom13 – SS5, 13-day momentum indicator 
• SS5.mom21 – SS5, 21-day momentum indicator 
• SS10.acc3 – SS10, 3-day acceleration indicator 
• SS10.acc5 – SS10, 5-day acceleration indicator 
• SS10.acc8 – SS10, 8-day acceleration indicator 
• SS10.acc13 – SS10, 13-day acceleration indicator 
• SS10.acc21 – SS10, 21-day acceleration indicator 
• SS5.acc3 – SS5, 3-day acceleration indicator 
• SS5.acc5 – SS5, 5-day acceleration indicator 
• SS5.acc8 – SS5, 8-day acceleration indicator 
• SS5.acc13 – SS5, 13-day acceleration indicator 
• SS5.acc21 – SS5, 21-day acceleration indicator 

Derived Values: Forward Directions 
These are binary valued: “Up” or “Down”.  They are the response values for the logistic 
regression.   Our goal is to predict these values. 
 
• SS10.fwd1 – SS10, one day forward 
• SS10.fwd5 – SS10, 5 days forward 
• SS10.fwd10 – SS10, 10 days forward 
• SS5.fwd1 – SS5, one day forward 
• SS5.fwd5 – SS5, 5 days foward 
• SS5.fwd10 – SS5, 10 days forward 
• SWP10.fwd5 – SWP10, 5 days forward 
• SWP10.fwd10 – SWP10, 10 days forward 
• SWP5.fwd5 – SWP5, 5 days forward 
• SWP5.fwd10 – SWP5, 10 days forward 
 

Appendix: R Code 
Although the body of this report, above, shows several R commands used to perform 
statistical calculations, three R scripts were used first to load the data into R, create the 
models, and perform some model evaluation. 

load.export.R 
The raw data was held in a CSV file called export.csv.  This script loaded the data, 
converted some columns into factors (R’s term for a categorical variables), and pre-
computed some additional columns used during the regressions and the evaluation. 
 

# 
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# Load export.csv into R 
# 



export = read.csv("export.csv", header=T) 
 
# Convert momentum and acceleration numbers into factors 
# 
export$SS10.mom3 = as.factor(ifelse(export$SS10.mom3 > 0, "Pos", "Neg")) 
export$SS10.mom5 = as.factor(ifelse(export$SS10.mom5 > 0, "Pos", "Neg")) 
export$SS10.mom8 = as.factor(ifelse(export$SS10.mom8 > 0, "Pos", "Neg")) 
export$SS10.mom13 = as.factor(ifelse(export$SS10.mom13 > 0, "Pos", "Neg")) 
export$SS10.mom21 = as.factor(ifelse(export$SS10.mom21 > 0, "Pos", "Neg")) 
 
export$SS5.mom3 = as.factor(ifelse(export$SS5.mom3 > 0, "Pos", "Neg")) 
export$SS5.mom5 = as.factor(ifelse(export$SS5.mom5 > 0, "Pos", "Neg")) 
export$SS5.mom8 = as.factor(ifelse(export$SS5.mom8 > 0, "Pos", "Neg")) 
export$SS5.mom13 = as.factor(ifelse(export$SS5.mom13 > 0, "Pos", "Neg")) 
export$SS5.mom21 = as.factor(ifelse(export$SS5.mom21 > 0, "Pos", "Neg")) 
 
export$SS10.acc3 = as.factor(ifelse(export$SS10.acc3 > 0, "Pos", "Neg")) 
export$SS10.acc5 = as.factor(ifelse(export$SS10.acc5 > 0, "Pos", "Neg")) 
export$SS10.acc8 = as.factor(ifelse(export$SS10.acc8 > 0, "Pos", "Neg")) 
export$SS10.acc13 = as.factor(ifelse(export$SS10.acc13 > 0, "Pos", "Neg")) 
export$SS10.acc21 = as.factor(ifelse(export$SS10.acc21 > 0, "Pos", "Neg")) 
 
export$SS5.acc3 = as.factor(ifelse(export$SS5.acc3 > 0, "Pos", "Neg")) 
export$SS5.acc5 = as.factor(ifelse(export$SS5.acc5 > 0, "Pos", "Neg")) 
export$SS5.acc8 = as.factor(ifelse(export$SS5.acc8 > 0, "Pos", "Neg")) 
export$SS5.acc13 = as.factor(ifelse(export$SS5.acc13 > 0, "Pos", "Neg")) 
export$SS5.acc21 = as.factor(ifelse(export$SS5.acc21 > 0, "Pos", "Neg")) 
 
# Calculate forward deltas 
# 
export$SS10.delta10 = export$SS10.fwd10 - export$SS10 
export$SS10.delta5  = export$SS10.fwd5  - export$SS10 
export$SS10.delta1  = export$SS10.fwd1  - export$SS10 
 
export$SS5.delta10 = export$SS5.fwd10 - export$SS5 
export$SS5.delta5  = export$SS5.fwd5  - export$SS5 
export$SS5.delta1  = export$SS5.fwd1  - export$SS5 
 
export$SWP10.delta10 = export$SWP10.fwd10 - export$SWP10 
export$SWP10.delta5  = export$SWP10.fwd5  - export$SWP10 
 
export$SWP5.delta10 = export$SWP5.fwd10 - export$SWP5 
export$SWP5.delta5  = export$SWP5.fwd5  - export$SWP5 
 
# Define objective functions 
# 
MIN_Z = 0.25 
 
z.score <- function(x) (x - mean(x)) / sd(x, na.rm=T) 
 
object = data.frame( 
 ss10.fwd10.buy   = z.score(export$SS10.delta10)  >   MIN_Z, 
 ss10.fwd10.sell  = z.score(export$SS10.delta10)  < -(MIN_Z), 
 ss5.fwd10.buy    = z.score(export$SS5.delta10)   >   MIN_Z, 
 ss5.fwd10.sell   = z.score(export$SS5.delta10)   < -(MIN_Z), 
 swp10.fwd10.buy  = z.score(export$SWP10.delta10) >   MIN_Z, 
 swp10.fwd10.sell = z.score(export$SWP10.delta10) < -(MIN_Z), 
 swp5.fwd10.buy   = z.score(export$SWP5.delta10)  >   MIN_Z, 
 swp5.fwd10.sell  = z.score(export$SWP5.delta10)  < -(MIN_Z) 
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 ) 

 

ma dels.R 
This script performed both the linear regression and the logistic regression, storing the 
resulting models in a list called models. 
 

# 

ke.mo

# Create the models for the spot data 
# 
models = list() 
 
# Full models for swap spreads 
# 
models$ss10.spot.full = lm(SS10 ~ TSY10 + TSY5 + SS5 + LIBOR + BIX + SPX, 
export) 
 
# 
#  Calculate residuals for the spot model 
# 
resids = list() 
 
resids$ss10.spot.full = residuals(models$ss10.spot.full) 
 
# 
# Create models for the forward trading objectives 
# 
 
# Minimal models for swap spreads 
# 
models$ss10.fwd10.buy.min  = glm(object$ss10.fwd10.buy ~ 
resids$ss10.spot.full, 
      family=binomial(), 
      data=export) 
models$ss10.fwd10.sell.min = glm(object$ss10.fwd10.sell ~ 
resids$ss10.spot.full, 
      family=binomial(), 
      data=export) 
 
# Final models 
# 
models$ss10.fwd10.buy.red = glm(object$ss10.fwd10.buy 
     ~ (resids$ss10.spot.full + SS10.mom5), 
     family=binomial(), data=export) 
 
models$ss10.fwd10.sell.red = glm(object$ss10.fwd10.sell 
     ~ (resids$ss10.spot.full + SS10.mom5), 
     family=binomial(), data=export) 

ap
Thi
calc ignals, 

ply.models.R 
s script performs some model evaluation by applying the logistic regressions to 
ulate log odds, converting log odds into probabilities and then into buy/sell s
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sim it and loss (P&L), and 
plo
 

ulating the effects of those signals, calculating the resultant prof
tting the P&L. 

# 
# Apply trading models to data, giving P&L 
# 
 
# Several experiments showed that 0.5 here is a good 
# balance of profit, drawdown, and sharpe ratio 
# 
PROB_THRESH = 0.5 
 
gen.signal <- function(model) { 
 pred = predict(model) 
 odds = exp(pred) 
 prob = odds / (1 + odds) 
 sig = prob > PROB_THRESH 
 
 return(sig) 
} 
 
calc.pl <- function(model, fwd) { 
 pl = ifelse(gen.signal(model), fwd, 0) 
 
 return(pl) 
} 
 
# Generate trade signals, buy and sell, for all models 
# 
signal = list() 
 
si nal$ss10.fwd10.buy.min  = gen.signal(modg els$ss10.fwd10.buy.min) 
sig els$ss10.fwd10.sell.min) nal$ss10.fwd10.sell.min = gen.signal(mod
 
signal$ss10.fwd10.buy.red  = gen.signal(models$ss10.fwd10.buy.red) 
signal$ss10.fwd10.sell.red = gen.signal(models$ss10.fwd10.sell.red) 
 
# Generate actual outcomes 
# 
outcomes = list() 
 
outcomes$ss10 = ifelse(export$SS10.delta5 > 0, "Up", "Dn") 
 
# Generate 2x2 contingency tables for all models 
# 
tables = list() 
 
make.table <- function(sig) { 
 tbl = table(signal  = sig, 
        outcome = outcomes$ss10, 
        exclude = NA) 
 return(tbl) 
} 
 
tables$ss10.fwd10.buy.min  = make.table(signal$ss10.fwd10.buy.min) 
tables$ss10.fwd10.sell.min = make.table(signal$ss10.fwd10.sell.min) 
 
ta les$ss10.fwd10.buy.red  = mab ke.table(signal$ss10.fwd10.buy.red) 
ta le 0.fwd10.sell.red = make.table(sib gnal$ss10.fwd10.sell.red) 
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s$ss1



 
rm(make.table) 
 
# Functions to calculate odds ratios 
# 
odds.ratio <- function(tbl) { 
 return ((tbl[1,1] * tbl[2,2]) / (tbl[1,2] * tbl[2,1])) 
} 
 
odds.ratio.ase <- function(tbl) sqrt(1/tbl[1,1] + 1/tbl[1,2] + 1/tbl[2,1] + 
1/tbl[2,2]) 
 
odds.ratio.ci <- function(tbl) { 
 logOR = log(odds.ratio(tbl)) 
 ase = odds.ratio.ase(tbl) 
 return (c(exp(logOR - 1.96*ase), exp(logOR + 1.96*ase))) 
} 
 
relative.risk <- function(tbl) { 
 return (tbl[1,1] / (tbl[1,1] + tbl[1,2])) / (tbl[2,1] / (tbl[2,1] + 
tbl[2,2])) 
} 
 
# Calculate P&L, buy and sell and combined, for all models 
# 
pl = list() 
 
pl$ss10.fwd10.buy.min  = calc.pl(models$ss10.fwd10.buy.min, 
export$SS10.delta1) 
pl ss10.fwd10.sell.min = calc.$ models$ss10.fwd10.sell.min, -pl(
(export$SS10.delta1)) 
pl$ss10.fwd10.min      = pl$ss10.fwd10.buy.min + pl$ss10.fwd10.sell.min 
 
pl$ss10.fwd10.buy.red  = calc.pl(models$ss10.fwd10.buy.red, 
export$SS10.delta1) 
pl$ss10.fwd10.sell.red = calc.pl(models$ss10.fwd10.sell.red, -
(export$SS10.delta1)) 
pl$ss10.fwd10.red      = pl$ss10.fwd10.buy.red + pl$ss10.fwd10.sell.red 
 
rm(calc.pl) 
 
# Plot the cumulative P&L 
# 
par(mfrow=c(1,1)) 
plot(cumsum(pl$ss10.fwd10.red), typ='l', ylab='P&L: Final model (x$1,000)', 
xlab='Day') 
 
summary.pl <- function(v, buyTbl, sellTbl) { 
 cat("\tP&L:", 
  sum(v), 
  "total =", 
  sum(v)/(length(v)/250), "p.a.", 
  "\n") 
 cat("\tAnn Sharpe ratio:", 
  250 * mean(v) / (sqrt(250) * sd(v)), 
  "\n"); 
 cat("\tMax drawdown:", max(cummax(cumsum(v)) - cumsum(v)), "\n"); 
 cat("\tOdds ratios:", odds.ratio(buyTbl), "(buy)\n"); 
 cat("\tOdds rati
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o CIs:", odds.ratio.ci(buyTbl), "(buy)\n") 
} 



 
cat("Minimal model P&L:\n"); 
summary.pl(pl$ss10.fwd10.min, tables$ss10.fwd10.buy.min, 
tables$ss10.fwd10.sell.min); 
 
cat("Fi  model:\n")nal ; 
summary (pl$ss10.fwd10.pl 10.buy.red); .red, tables$ss10.fwd
 
rm(summary.pl) 

 

Appendi
This SAS script was used to test the 2x2 contingency table produced by simulated 
trading. 
 

/* 

x: SAS Code and Output 

 * MAT 442 Final Project: Signal analysis 
 */ 
 
 
data trades; 
 infile "trades.csv" dlm=","; 
 input Signal $ Outcome $; 
run; 
 
ods html; 
 
proc freq data=trades; 
 title "Trade Analysis"; 
 tables Signal * Outcome / chisq expected cellchi2 trend measures ci; 
run; 
 
ods html close; 

 
 
SAS output: 
 
Trade Analysis 
 
The FREQ Procedure 

Frequency  
Expected  

Cell Chi-Square 
Percent  
Row Pct  
Col Pct  

 

Table of Signal by Outcome 

Outcome Signal Total 

"Dn"  "Up"  

"Buy" 71 90 161 

 33



94.958 66.042   
6.0446
15.74 
44.10 
26.69 

8.6911   
19.96 35.70 
55.90   
48.65   

195 95 290 "Sell" 
171.04
3.3558
43.24 
67.24 
73.31 

118.96   
4.8251
21.06 
32.76

  
64.30 

 
51.35 

  
  

266 185 451 Total  
58.98 41.02 100.00 

 
 

Statistics for Table of Signal by Outcome 

DF Value Prob Statistic 

Chi-Square 1 22.9165 <.0001 

Likelihood Ratio Chi-Square 1 22.8214 <.0001 

 1 21.9700 <.0001 Continuity Adj. Chi-Square

1 22.8657 <.0001 Mantel-Haenszel Chi-Square

  -0.2254   Phi Coefficient 

  0.2199   Contingency Coefficient 

  -0.2254   Cramer's V 

 

Fisher's Exact st Te  

Cell (1,1) Frequency ( 7F) 1 

Left-sided Pr <= F 1 .452E-06

Right-sided Pr >= F 1 .0000 
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Fisher's Exact Test 

9.148E-07Table Probability (P) 

2.363E-06Two-sided Pr <= P 

 

Statistic Value ASE 95% 
Confidence Limits

-0.4447 0.0811 -0.6036 -0.2859 Gamma 

-0.2254 0.0466 -0.3168 -0.1340 Kendall's Tau-b 

-0.2125 0.0443 -0.2994 -0.1256 Stuart's Tau-c 

-0.2314 0.0479 -0.3252 -0.1376 Somers' D C|R 

-0.2196 0.0457 -0.3091 -0.1301 Somers' D R|C 

-0.2254 0.0466 -0.3168 -0.1340 Pearson Correlation 

 -0.-0.2254 0.0466 -0.3168 1340 Spearman Correlation 

0.0000 0.2300 0.1027 0.0650Lambda Asymmetric C|R 

0.0000 0.0000 0.0000 0.0000 Lambda Asymmetric R|C 

0.0549 0.0355 0.0000 0.1244 Lambda Symmetric 

0.0374 0.0155 0.0069 0.0678 Uncertainty t C|R  Coefficien

0.0388 0.0161 0.0073 0.0704 Uncertainty Coefficient R|C 

0.0381 0.0158 0.0071 0.0691 Uncertainty mmetric Coefficient Sy

 

Estimates of the Relat  ( oive Risk Row1/R w2) 

Type of Study Value 95% Confid mience Li ts 

Case-Control (Odds Ratio) 0.3843 0.2586 0.5711 

Cohort (Col1 Risk) 0.6558 0.5415 0.7943 

Cohort (Col2 Risk) 1.7064 1.3770 2.1147 
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Cochran-Armitage Trend Test

4.7871 Statistic (Z) 

<.0001 One-sided Pr > Z 

<.0001 Two-sided Pr > |Z| 

 

Sample Size = 451 
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